INEC

Superconducting Digital Computing: Promise-Progress-Prospects Quentin Herr, Anna Herr

> Semicon Europa, Messe München 18 November 2021

"These then are some illustrations of things that are happening in modern times—the transistor, the laser, and now these [Josephson] junctions, whose ultimate practical applications are still unknown." — Richard Feynman, 1965

Key Industry Challenges

Industry dynamics

- Cost and environmental impacts of AI are unsustainable
- Hardware does not keep up with AI demands
- Static training at data centers is inefficient
- Next-node foundry costs are rising

Superconducting solutions

Energy efficiency Unmatched compute density Local, real-time systems Quantum computing

Unlimited demand for compute at any cost

Source: ARK Investment Management LLC, "AI and Compute." OpenAI, https://arkinv.st/2ZOH2Rr.

source tractica via @mikequindazzi

ເກາec

Promise

Fundamental advantages of superconducting digital electronics

 \vec{B}

Zero resistance wires

700 GHz Analog interconnects

 Φ_0

Quantum accurate digital bits

Herr, Quentin P., Andrew D. Smith, and Michael S. Wire. "High speed data link between digital superconductor chips." Applied physics letters 80, no. 17 (2002): 3210-3212.

A. Y. Herr et al., "An 8-bit carry look-ahead adder with 150 ps latency and sub-microwatt power dissipation at 10 GHz," Journal of Applied Physics, vol. 113, no. 3, p. 033911, 2013.

Josephson effect

Fast, low energy digital logic

 $E = 2 \ 10^{-20} J$ $\Phi_0 \approx 2 \text{ mVps}$

$$=\frac{h}{2e}\approx 2\times 10^{-15} \text{ Wb}=2 \text{ mApH}$$

Compute with Single-Flux-Quantum Logic

Architecture advantages

- Unmatched interconnects bandwidth
- Negligible energy dissipation
- High throughput & latency
- Dense packaging
- System volume cooling
- Native co-processor for superconducting quantum computer

ເງຍອ

Application and Market Space

HPC work loads

- Large ML workloads
- ExaFlop in a single system
- Fast Terabit data analytics

Classical/quantum co-processor

• Neuromorphic co-processor

EDGE

Cost effectiveness Low latency Local model effectiveness Reinforcement learning Fast, real-time processing

BIG DATA

Cost effectiveness Energy efficiency Increased throughput

QUANTUM

Changing computing paradigm Enabling quantum algorithms

ເງຍ

Classical-Quantum Integration

Superconducting technology key advantages

- Compatibility in operating temperature
- Compatibility in energy levels
- Compatibility in materials and devices

Reducing latency through the stack Moving massive processing to 4K

Reducing energy disparity Quantum control with minimal noise

Sharing the same fabrication process Cost efficiency

ເງຍອ

Efficient Liquid He Cooling at Large Scale

 Superconducting electronics breaks even at PFLOP scale

Rapid increase in power efficiency with scale

۲

• 100 M\$/year savings in electricity

Volumetric Cooling Enables Dense Packaging

Interconnects with Breakthrough Energy Efficency

Superconducting Wires are Lossless from DC to 700 GHz Analog Bandwidth

- Losses 10⁻⁶ per wavelength
- Pulse based
- Source terminated
- **50-100** Ω
- Energy per bit 0.1 atto-J

Progress

Feasibility Stage of Superconducting Digital Development

Q. P. Herr et al., "Reproducible operating margins on a 72 800-device digital superconducting chip," Superconductor Science and Technology, vol. 28, no. 12, p. 124003, 2015.

H. Dai et al., "Isochronous data link across a superconducting Nb flex cable with 5 femtojoules per bit," arXiv preprint arXiv:2109.01808, 2021.

ເກາຍc

Core Technology Demonstrations

8-bit CPU 5x5 mm²

- Resonant clock/power
- RISC CPU architecture
- Gate library
- Memory access

16-bit CPU 10x10 mm²

- Compatibility with CMOS RTL
- Efficient EDA tools
- Ultra fast interconnects
- Multibank memory

M. Vesely et al., "A pipelined superconducting 16-bit CPU design," Presented at the Applied Superconductivity Conference, Washington State Convention Center, Seattle, WA, October 29, 2018.

9 chip MCM $32x32 \text{ mm}^2$

- Superconducting MCM
- Resonator scaling
- D2D communication at speed
- Synchronous communication

J. Egan et al., "Synchronous chip-to-chip communication with a multi-chip resonator clock distribution network," arXiv preprint arXiv:2109.00560, 2021.

Superconducting Technology Enablers

A deficiency in any of a number of factors dooms an endeavor to failure (Moore, 2001)

Window of opportunity

- Exploding world of information
- Demand for green hardware
- Change of compute paradigms

Superconducting Fabrication Process

Lincoln Lab "SFQ5ee" process

General Features

1 MJJ 0.25 μm 4-8 metal layers Step coverage vias

Sergey Tolpygo et al., "Advanced fabrication processes for superconducting very large-scale integrated circuits." IEEE Transactions on Applied Superconductivity 26, no. 3 (2016): 1-10.

1 Nb wiring $T_c \approx 9 \text{ K}$

Sputtering Getter material Temperature budget < 200° C Refractory metal Minimal feature size $\approx 0.25 \ \mu m$

2 Nb/AlOx/Nb tunnel Josephson junctions Sputtering & in chamber oxidation Good wafer-to-wafer uniformity Temperature budget < 150° C Critical current density < $100 \ \mu A / \mu m^2$ Thin barrier hard to control Minimal feature size R $\approx 0.34 \ \mu m$

- Source A contract and the second s
 - Low temperature TEOS ILD
 High loss
 Poor mechanical stability

Prospects

Switching Material Basis Enables Fabrication Process Advance

Leveraging progress in the Quantum and RF communities

Process modules

Josephson junction High critical current density Low capacitance High quality factor High thermal budget

Performance metrics

Density and Speed Minimum device diameter 210 nm Clock frequency 30-50 GHz Low spread < 2% Easy integration

Efficient wires High adjustable inductance High thermal budget High temperature stability

Density and Power Efficiency The smallest pitch 100 nm Power delivery efficiency 89% Efficient stack with 16 ML for 0.4 BJJ/cm²

Scaling Superconducting Fabrication

20 ExaFlop system

- 0.4 BJJ/cm²
- 16 ML stack
- 24-50 GHz clock frequency
- 200x power efficiency

New process start

10 years ahead in "superconducting" CMOS scaling 10 years behind CMOS scale Material basis for scaling down to 10 nm

ເງຍ

Architecture Trade Space

	CMOS 7 nm	Superconducting 30 nm
Speed	I.4 GHz	17x
Memory	500 MB/cm ² (SRAM)	0.01x
Device density	IT devices/cm ²	0.1x
Interconnects	I.6 Gb/line @ I pJ/bit	120x, 1000x
Power efficiency	I TOPS/W	50x

Trading density and memory capacity for speed and interconnect bandwidth

- Large work loads with high arithmetic intensity and memory reuse
- Dense packaging with extreme interconnect bandwidth

ເງຍອ

Packaging Optimized for Dense Workloads

Illustration: Flat GMM architecture Sufficient bandwidth to fully interconnect

- 325 KW/ I KW (cold)
- 20 AI ExaFLOPS in 0.001 m³
- 100x performance vs NVDIA DGX architecture

Efficiency and Computational Volume

Circuit energy efficiency is constant up to 100 ExaFlop

Chip size, board count and performance

Superconducting Digital Technology

Enabling sustainable hardware for deep learning and quantum computing

100x energy efficiency

1000x compute density

Cheaper local systems

embracing a better life