mec

Superconducting Digital Computing: Promise-Progress-Prospects
Quentin Herr, Anna Herr

Semicon Europa, Messe Miinchen
I8 November 2021



)
St 3

-
\

Yanoaad

VRN DeR) BRm) R
) -

N

¥ oV BV i i i Vo

DI e SN e
0, .00 wr, ws oe ee ee_ ew
D A\

AL

2o K Gy Koo K e K /

Koo Moo o Moo K o U
Y-
E‘
s

5 fiag
e
v

=

Ve
=
-
R
——
e,

©EE e
4 oy

P P R

- e

o, e pem

ootk oo

K
v

oK

LTS Iy, S

ok

laser, and now these [Josephson] junctions, whose ultimate practical applications are still unknown.”
— Richard Feynman, 1965
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Key Industry Challenges

Industry dynamics Superconducting solutions
* Cost and environmental impacts of Al are unsustainable Energy efficiency

* Hardware does not keep up with Al demands Unmatched compute density

» Static training at data centers is inefficient Local, real-time systems

* Next-node foundry costs are rising Quantum computing

Unlimited demand for compute at any cost
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Fundamental advantages of superconducting digital electronics

Zero resistance wires —) 700 GHz Analog interconnects

0.1 — 60 Gbps chip-to-chip communication Herr, Quentin P., Andrew D. Smith, and

superconducting O O O OO Michael S. Wire. "High speed data link

transition between digital superconductor chips." Applied
physics letters 80, no. 17 (2002): 3210-3212.
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A. Y. Herr et al,, “An 8-bit carry look-ahead adder
with 150 ps latency and sub-microwatt power
dissipation at 10 GHz," Journal of Applied Physics,

....... : vol. 113, n0. 3, p. 033911, 2013.
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Meissner effect — Quantum accurate digital bits

h
=2—ez2x10_15Wb=2mApH

Josephson effect Fast, low energy digital logic

| -1600 devices
S — 1ps @y ~ 2mVps 57 2.5 uWat 12 GHz
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Compute with Single-Flux-Quantum Logic

Fundamentals Architecture advantages

* Unmatched interconnects bandwidth
Negligible energy dissipation

High throughput & latency

* Dense packaging

* System volume cooling

* Native co-processor for superconducting
quantum computer
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Application and Market Space

e Supercomputer modules

* Large ML workloads * HPC work loads

* ExaFlop in a single system
* Fast Terabit data analytics

e Classical/quantum co-processor
* Neuromorphic co-processor

P S — -

EDGE BIG DATA QUANTUM
Cost effectiveness Cost effectiveness Changing computing paradigm
Low latency Energy efficiency Enabling quantum algorithms
Local model effectiveness Increased throughput

Reinforcement learning
Fast, real-time processing
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Classical-Quantum Integration

Superconducting technology key advantages
* Compatibility in operating temperature
¢ Compatibility in energy levels

* Compatibility in materials and devices

Reducing latency through the stack

Moving massive processing to 4K Classical data ing <777 GB, PFlop

Reducing energy disparity

Classical error-correction, decoding ¥ 7 Mixed-signal
Quantum control with minimal noise

Classical control and readout S5y
Sharing the same fabrication process
Cost efﬁciency Quantum accelerator
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Efficient Liquid He Cooling at Large Scale

Power, Electricity Cost vs. Computational Scale
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Superconducting electronics
breaks even at PFLOP scale

Rapid increase in power
efficiency with scale

100 M$/year savings in
electricity



Volumetric Cooling Enables Dense Packaging
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= Forced air CMOS reference scaled by 325W/W for comparison . . .

2 100 Volumetric He cooling
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L ool Linde commercial cryocooler

2 5 40

3-Rack form factor

| KW cold/320 KW wall plug
| ExaFlop compute power

2 M$ low volume production

Chip performance PFLOP/cm?
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Interconnects with Breakthrough Energy Efficency

Superconducting Wires are Lossless from DC to 700 GHz Analog Bandwidth

Transmission energy pJ/bit

“mmec

7 nm TMSC

On chip

BoWV Intel

-

SOA optical link

NVlink

000 —
10 000x

Projected optical link

e -

*325x cooling power

D2D

B2B

2000
R2R

Losses 10-¢ per wavelength
Pulse based
Source terminated

50-100 O
Energy per bit 0.1 atto- ]
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Feasibility Stage of Superconducting Digital Development

U.S. Government investment

Initial ideas | Rapid success phase > Plateau

Small-scale fabrication process: D-Wave, Lincoln Labs

Fundamentals:

[
»

Power . . 16-bit ALU
78KJJ Resonator 8-bit register
Clock Shift regist lock/ fil
Stability It register clock/power e 8-bit CPU
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
8-bit CLA External data link Library 1KB memory
10 GHz 10 Gbps/wire CAD tools
Q. P. Herr at al., “Ultra-low-power superconductor logic," Journal of applied physics, vol. 109, no. 10, p. 103903, 201 |. 8 Chlp MCM
8 GHz

A. Y. Herr et al., “An 8-bit carry look-ahead adder with 150 ps latency and sub-microwatt power dissipation at 10 GHz," Journal of Applied
Physics, vol. 113, no. 3, p. 033911, 2013.

Q. P. Herr et al., “Reproducible operating margins on a 72 800-device digital superconducting chip," Superconductor Science and Technology, vol.
28, no. 12, p. 124003, 2015.

H. Dai et al., “Isochronous data link across a superconducting Nb flex cable with 5 femtojoules per bit," arXiv preprint arXiv:2109.01808, 2021.
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Core Technology Demonstrations

8 blt CPU 5x5 mm? | 6-bit CPU 10x10 mm?2

1Kb memory=banks

16x8 memory bank .
4 1.2 dB margin

1.5 dB-margin

\ \ 16B register file
2 dB margin

8-bit adder
2 dB margin

Digital design 10 GHz

16b ALU
Interconnects 3 dB margin

25 dB margin

\

D-wave 0.25 um process

Resonator 3.5 GHz

~5600 Gates
~1600 Nen Memory Gates

\ 4x8 register file

2/dB margin
Lincoln Lab 0.5 pum |process

Resonant clock/power ¢ Compatibility with CMOS RTL
RISC CPU architecture e Efficient EDA tools

Gate library * Ultra fast interconnects
Memory access e Multibank memory

M. Vesely et al., “A pipelined superconducting 16-bit CPU design,” Presented at the Applied
Superconductivity Conference, Washington State Convention Center, Seattle, WA, October 29, 2018.

“mmec g

9 ch|p MCM 32x32 mm?

. Superconductlng MCM

* Resonator scaling

* D2D communication at speed
*  Synchronous communication

J. Egan et al., “Synchronous chip-to-chip communication with a multi-chip
resonator clock distribution network," arXiv preprint arXiv:2109.00560, 2021.



Superconducting Technology Enablers
A deficiency in any of a number of factors dooms an endeavor to failure (Moore, 2001)

Logic Memory Bandwidth Fabrication Packaging

Window of opportunity
* Exploding world of information

Innovation

needed /

* Demand for green hardware

* Change of compute paradigms

Cost effective

“mec Feasibility demonstrations




Superconducting Fabrication Process

Lincoln Lab “SFQ5ee” process @ NbwiringT, =~ 9K
Sputtering
X Getter material
\ ' Reststonis Temperature budget < 200° C

Refractory metal
Minimal feature size = 0.25 um

T ® Nb/AIOx/Nb tunnel Josephson junctions
1 Sputtering & in chamber oxidation

Good wafer-to-wafer uniformity

Temperature budget < 150° C

Critical current density < 100 puA/um?

High Kinetic Inductance Thin barrier hard to control

Layer Minimal feature size R = 0.34 um
General Features © Normal metal shunt'
1 MJJ Required to shunt JJ capacitance

Sputtering

0.25 um Large area
4-8 metal Iayers_ @ Low temperature TEOS ILD
Step coverage vias High loss
Sergey Tolpygo et al., “Advanced fabrication processes for superconducting very large-scale Poor mechanical sta b|||ty

integrated circuits.” IEEE Transactions on Applied Superconductivity 26, no. 3 (2016): |-10.
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Switching Material Basis Enables Fabrication Process Advance
Leveraging progress in the Quantum and RF communities

Process modules

Josephson junction .
High critical current density 0ol Barrier

Low capacitance |:>

High quality factor
High thermal budget

Efficient wires NbTiN

High adjustable inductance |:>
High thermal budget

High temperature stability

“mmec o

Performance metrics

Density and Speed

Minimum device diameter 210 nm
Clock frequency 30-50 GHz

Low spread < 2%

Easy integration

Density and Power Efficiency
The smallest pitch 100 nm

Power delivery efficiency 89%
Efficient stack with 16 ML for 0.4 BJJ/cm?2



Scaling Superconducting Fabrication

o e

3um Source: TSMC roadmap

0.18pm® @

0.13pm @
90nm —
65nm @
Superconducting process @

2021 40nm

90i -
nm  65nm 450m 40nm 28nm 20nm 16nm 10nm 7nm 5m§nm
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20 ExaFlop system

0.4 BJJ/cm?

16 ML stack

24-50 GHz clock frequency
200x power efficiency

New process start

10 years behind CMOS scale

10 years ahead in “superconducting” CMOS scaling

Material basis for scaling down to 10 nm
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Architecture Trade Space

CMOS Superconducting
7 nm 30 nm
Speed |.4 GHz 1 7x
Memory 500 MB/cm? (SRAM)
Device density | T devices/cm?
Interconnects 1.6 Gb/line @ | pJ/bit 120x, 1000x
Power efficiency | TOPS/W 50x

Trading density and memory capacity for speed and interconnect bandwidth
* Large work loads with high arithmetic intensity and memory reuse

* Dense packaging with extreme interconnect bandwidth

“mmec 0



Packaging Optimized for Dense Workloads

e 325 KW/ | KW (cold)

* 20Al ExaFLOPS in 0.001 m3
|00x performance vs NVDIA DGX

lllustration: Flat GMM architecture
Sufficient bandwidth to fully interconnect

architecture

134 mm
180 mm
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Efficiency and Computational Volume
Circuit energy efficiency is constant up to 100 ExaFlop

Energy efficiency vs. performance

1,000.0
Chip Server Superpod
65x-100x  65x-275x  221x-300x
100.0
2 100
a
@)
-
L
o
1.0 I I
0.1 I
031 2.50 350.00
“umec PFLOP (Al BF16)

A100
B Wafer scale
m SC|
mSC2
mSC3

Chip size, board count and performance

ExaFl
100.0 =2op
performance
o
O ExaFIop
i ExaFIop
o]
X
L
Z B Chip size
E B Number of boards
= B Performance

Technology generation
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Superconducting Digital Technology

Enabling sustainable hardware for deep learning and quantum computing

Greener > 100x energy efficiency

e

More inclusive> Cheaper local systems

1000x compute density
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Lihnec

embracing a better life



