Artificial Intelligence

SOITEC Engineered Substrates and Materials for 5G (B5G & 6G)

Cesar Roda Neve - 18th Nov. 2021

Energy Efficiency

ssitec

5G

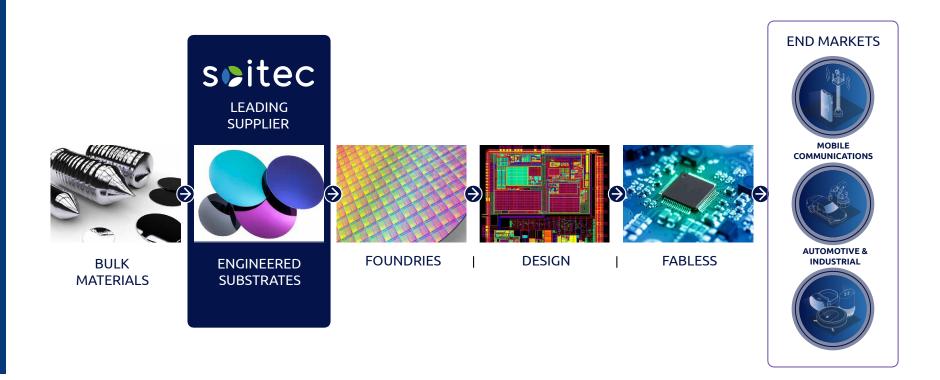
Outline

About Soitec technology

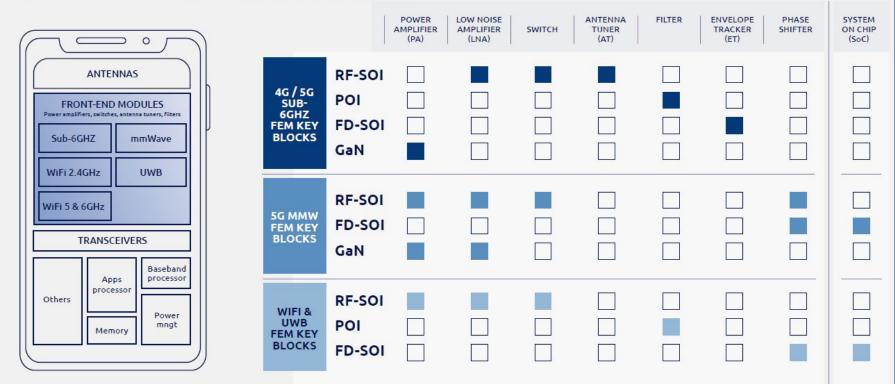
5G / B5G & 6G system needs

Existing and NEW materials

Takeaways & Conclusions

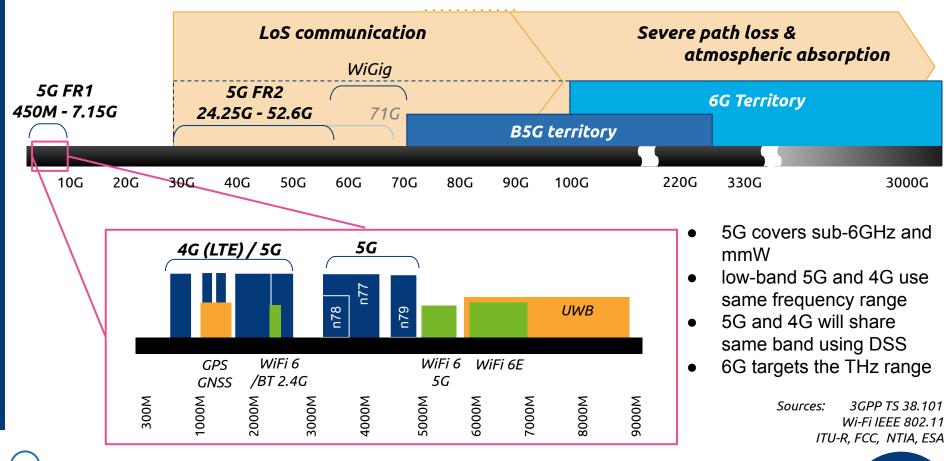


Soitec has built a unique position in the value chain...



A COMPREHENSIVE OFFER FOR RF AND mmWave FRONT END MODULES

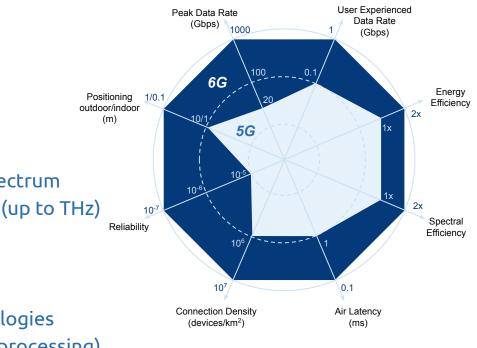
5


Nov. 2021 Soitec proprietary – no copying or distribution permitted 2021 SEMICON Europa: Advancements in Wireless Technologies

ssitec

5G / B5G & 6G system needs

5G/B5G/6G/WiFi/BT Spectrum


soitec

System needs for 5G / B5G & 6G

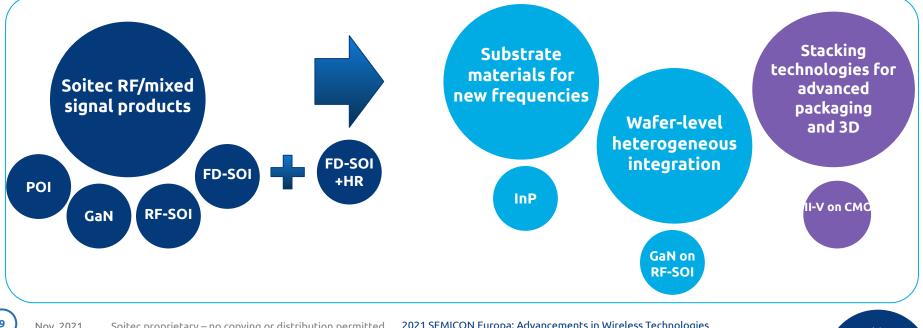
- Spectrum extension up to mmW
- High RF power
- Energy efficiency
 - High linearity
 - High RFFE integration

- More efficient use of new and existing spectrum
- More efficient use of radiated RF power
- Excellent linearity
- High speed I/Os, DAC/ADC
- System integration of best in class technologies
 - (RFFE, analog/mixed, processing)

Source: Samsung research , 2021

в)

6

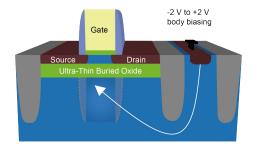

య

50

m

New substrate materials for 5G / B5G & 6G

- Use of existing high-performance solutions
- Enhancement of current 4G/5G solutions for mmW and 6G
- New substrate materials for B5G and 6G
- New substrate materials for higher performance in 5G applications


seitec

Existing and NEW Materials

FD-SOI for 5G mmW

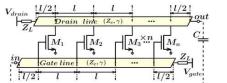
- FD-SOI gives superior power/performance tradeoff
- Smaller process variability
- Better analog/RF performance
 - Higher bandwidth/lower power
 - Lower noise
 - Less parasitics
- mmW FEW building blocks show excellent performance
- Ideal for SOC integration with mmW FEM

28 GHz FEM Benchmark* circuit results (SOI 22FDX)

	Peak PAE	Psat	Gain	3dB BW
PA (differential cascode)	42%	18 dBm	13 dB	11 GHz
	Gain	IIP3	NF	Pdc
LNA (single stage cascode)	13 dB	3 dBm	1.35 dB	13 mW
	IL	Isolation	OIP3	
Switch (3-stack series/shunt)	0.65 dB	> 23 dB	>30 dBm	
$ED22X \rightarrow ft/fmax: 35($	1/120 CU-			1: 0004

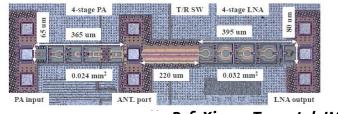
 $FD22X \rightarrow ft/fmax: 350/430 \text{ GHz}$

Source: Global Foundries , 2021

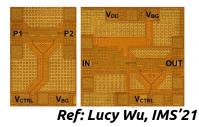

*Benchmark results in-line with state-of-the-art results (see Annex)

11)

FD-SOI already a solution for >100 GHz

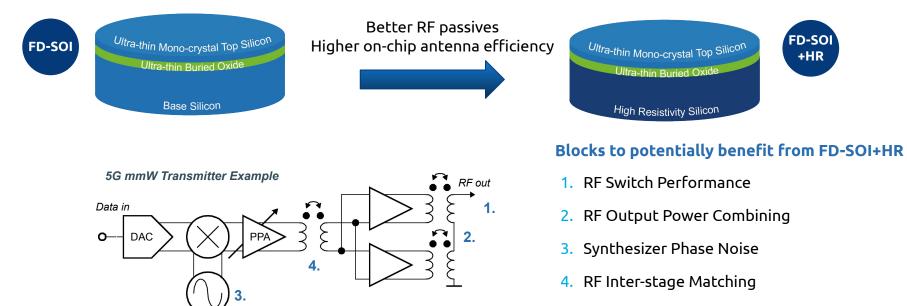

Distributed oscillator at 134 and 202 GHz 28 nm FD-SOI CMOS

Ref: R. Guillaume at al, RFIC'17



Ref: Xinyan Tang etal, IMS'21

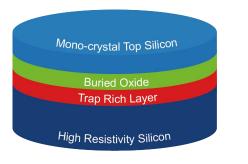
seitec

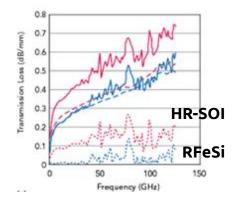

220 GHz high-isolation SPST switch and Voltage Gain LNA

FD-SOI: SoC TECHNOLOGY FOR Co-INTEGRATED LOGIC & RF FEM SYSTEMS (5G/mmW)

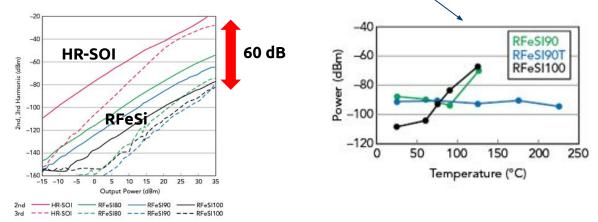
FD-SOI Material Roadmap

Addressing both Next-Generation 5G mmW & Sub-THz design



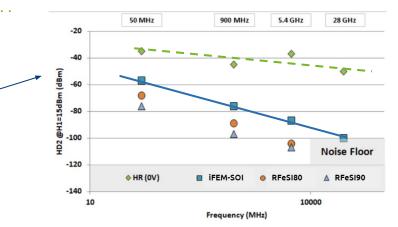

5. RF Phase Shifter (not shown)

FD-SOI +HR: SCALING OPERATION FREQUENCY WHILE MAINTAINING DIGITAL INTEGRATION

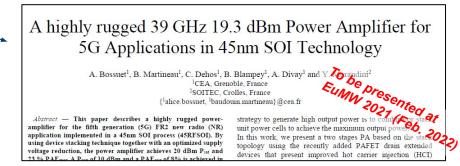


RF-SOI for RFFE

- RFeSi substrates provide the benefit of Si CMOS and a high-resistivity substrate
- Parasitic reduction and high-speed transistors
- High-quality RF passives with improved quality factor and low-loss interconnections
- Highly linear substrate (for RF switches and passives)
- Can be enhanced to provide temperature stability



Measurements performed in collaboration with UCLouvain


RF-SOI for 5G mmW

- Low substrate losses kept at > 100 GHz
- Linearity is maintained at 28 GHz
 RFeSI performs even better at mmW
- Use of transistor stacking techniques thanks to single FET isolation
- Ideal for Integration of robust high-end FEM modules at 24 and 40 GHz
 - PA
 - LNA
 - RF switches
 - envelope trackers
 - phase shifter
 - o combiners

Measurements performed in collaboration with UCL

seitec

CEA-SOITEC JDP for RF-SOI 40 GHz applications

RF-SOI also for > 100 GHz applications

Beamforming phase-array transmitter at 140 GHz using 45 nm RF-SOI CMOS

8-Element 140 GHz Phased-Array Transmitter w/ 32 dBm Peak EIRP and > 16 Gbps 16QAM and 64QAM Operation

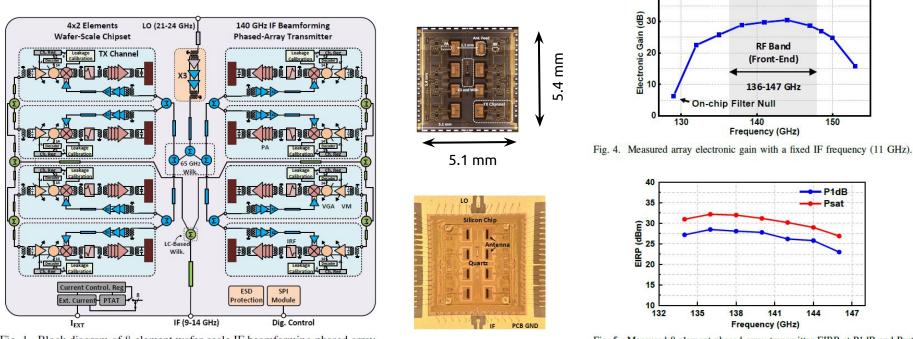
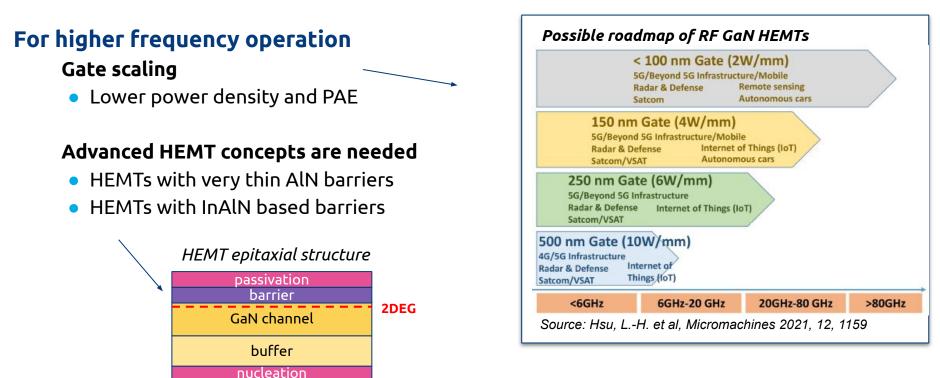


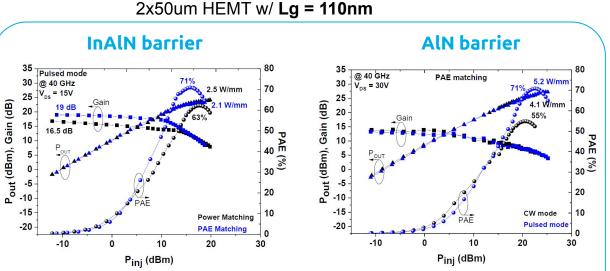
Fig. 1. Block diagram of 8-element wafer-scale IF beamforming phased array transmitter chipset at 140 GHz in CMOS-SOI.

Ref: Siwei Li et al, RFIC'21

Fig. 5. Measured 8-element phased-array transmitter EIRP at P1dB and Psat versus frequency.

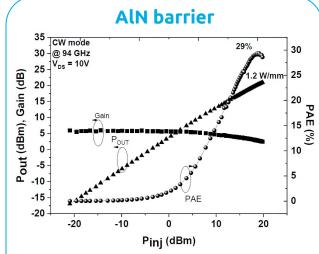

GaN RF technology is typically deployed in the sub 6GHz and X-band

- Typically based on 20nm Al25Ga75N / GaN HEMT grown on SiC substrates
 - SiC \Rightarrow high-end
 - o Si ⇒low-cost
- Features very high power density (~ 10W/mm) and high PAE (>65%)
- Operated at 28V or 48V
- High temperature capability
- Typical application is in infrastructure (base stations)


GaN RF technology for mmW

Si / SiC substrate

Performance of GaN HEMT for RF PA at mmW



- AlN barrier robust HEMT solution with higher power density
- State-of-the-Art PAE (71%)
- InAlN having higher gain due to much larger ft/fmax

Active load-pull @ 40 GHz

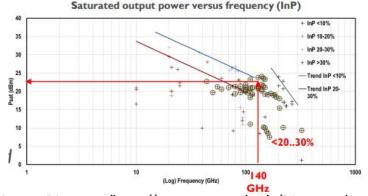
AlN gain limited by electron mobility

- State-of-the-Art PAE (29%) and power density
- Expected higher gain by using InAlN

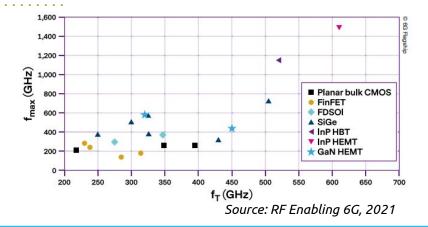
Measurements performed in collaboration with IEMN

GaN RF roadmap

GaN on (RF-)SOI


- Replace HR-Si substrate by RF-SOI
- Better vertical isolation and increased linearity
- Higher BW due to smaller feedback (vertical) capacitance
- Could allow PA, LNA and switch integration on GaN
- Possible path for Si CMOS co-integration and mobile handset application

GaN	
Si Buried Oxide	
Si	


20

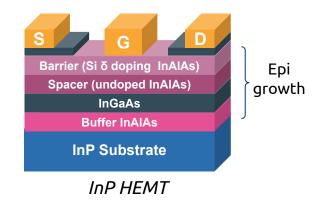
InP best power amplifier technology for applications > 100GHz

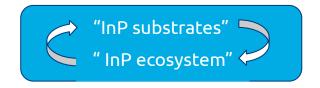
Source: PA survey, (https://gems.ece.gatech.edu/PA_survey.html)

Technology	Feature size (nm)	fMAX (GHz)	Vbr (V)	Nfmin (dB) at 50GHz**	
GaAs pHEMT	100	185	7	0.5	
GaAs mHEMT	70	450	3	0.5	
GaAs mHEMT	35	900	2	1	
InP HEMT	130	380	1	<1	
InP HEMT	30	1200	1	<1	
GaN HEMT	60	250	20	1	
GaN HEMT	40	400	42	1.2	
SOI CMOS	45	280	1	2-3	
Si Ge-HBT	55	400	1.55	1.5	
SiGe-HBT	130	400	1.4	2	
InP DHBT	250	650	4	3	
InP DHBT	130	1100	3		

- A relatively mature InP 0.25um process offers fmax of 600GHz, with a breakdown voltage of 4.5V, for high efficiency with moderate output power at 140GHz
- Multistage InP PAs provide more than 20 dB of gain with efficiency of 25% @ 140GHz
- InP is superior to CMOS with higher power and higher efficiency
- InP is the only material allowing fmax at THz

Soitec proprietary – no copying or distribution permitted 2021 SEMICON Europa: Advancements in Wireless Technologies

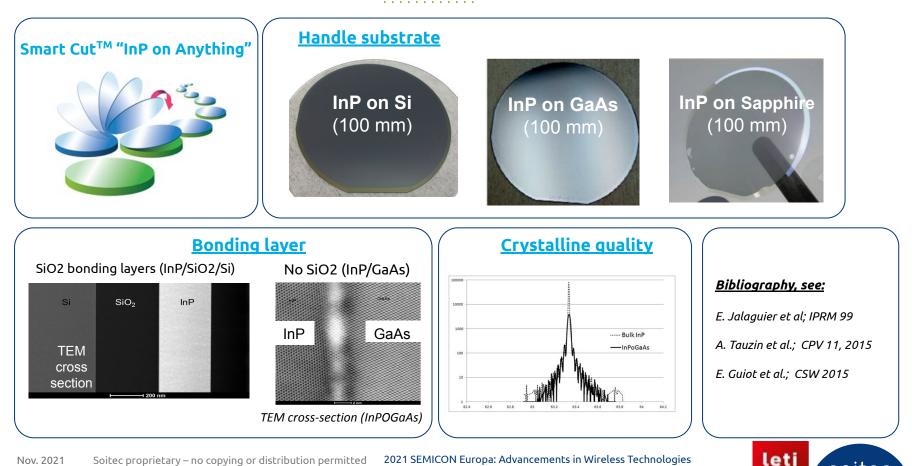

InP adoption


InP has major advantages for RF

- High frequency devices (RF, THZ, 5G/6G, ...)
- Very low 1/f noise
- High mobility/current gain at low current density
- Higher thermal conductivity than GaAs

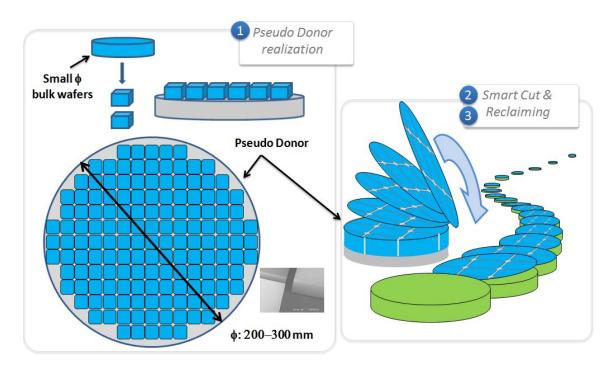
but InP has also major drawbacks

- Expensive material
- Brittle material
- Poor availability
- Low diameter bulk substrates,
 - (mostly limited to 100 mm today)



Introduce engineered substrates solutions based on Smart Cut[™] technology !

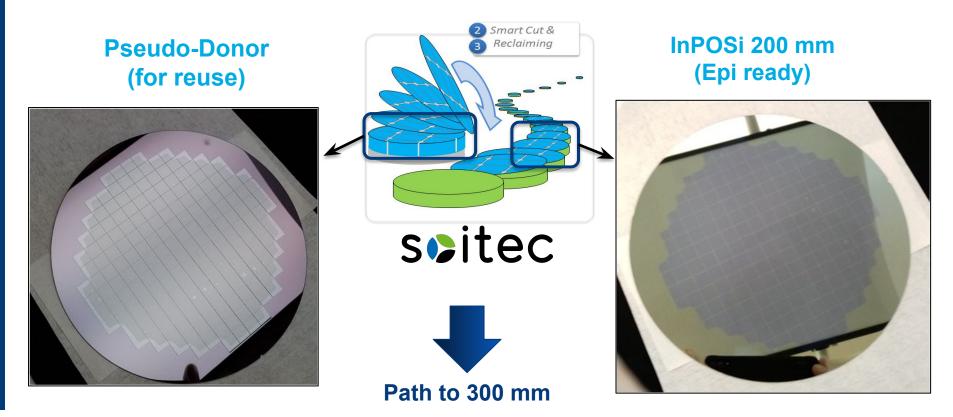
Smart Cut[™] InP on "small diameter"

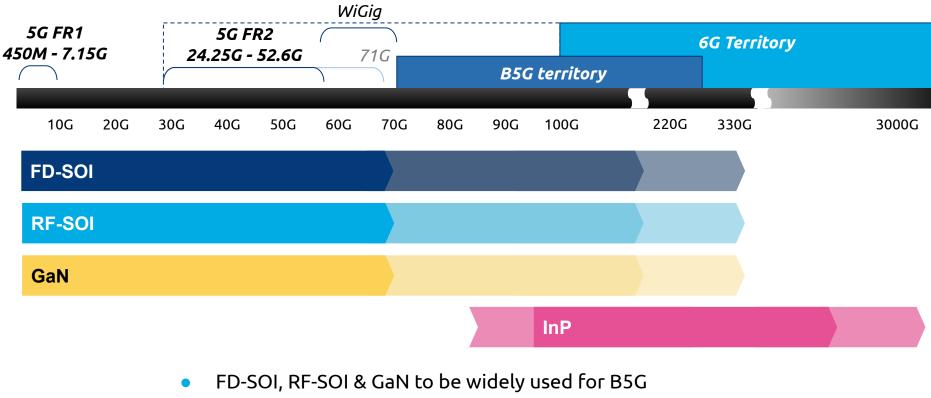

seitec

Ceatech

Innovative InP substrate solution for 200 - 300 mm

Smart Cut[™] InP & Tiling


- Scaling to larger wafer diameter (200-300 mm)
- Pseudo-Donor wafer: From small InP wafers
- Handle substrate: Silicon (bulk or device wafer)
- Versatile die size and geometries
- Reuse of donor substrate


24

Smart Cut[™] and tiling of InP on "LARGE diameter"

Takeaways

• SOITEC's InP to enable high-performance 6G applications

Nov. 2021 Soitec proprietary – no copying or distribution permitted 2021 SEMICON Europa: Advancements in Wireless Technologies

26

Conclusions

- SOITEC's Engineered substrates already enable 5G and mmW
- FD-SOI and FD-SOI+HR SoC technology for logic/analog co-integration and efficient antenna on-chip solutions
- RF-SOI robust solution for sub-6GHz and mmW RFFE applications
- GaN solutions, GaN on (RF-)SOI, to enhance GaN adoption for handset application at mid-band mmW
- Existing, enhanced, and new substrate materials (InP) will be used for B5G and 6G

Thank you

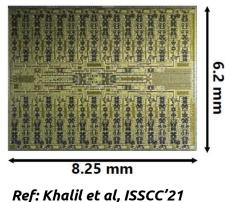
Follow us on:

f Soitec

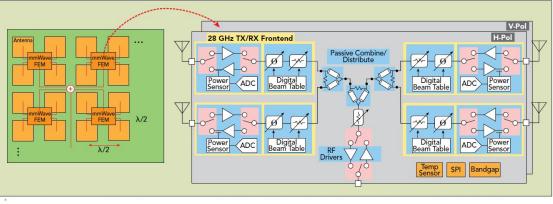
- 9 @Soitec_FR / @Soitec_EN
- in Soitec

For more information, visit us at: WWW.soitec.com

State-of-the-Art of FD-SOI technology at mmW for FEM


PA			f0 [GHz]	Gain [dB]		Psat [dBm]			P1dB dBm]	PAE max	PAE 6dB backoff			
	Torres'18	28 FD	1.98V	31	31		21.9 to 32.6		17.3 to 17.9		15.3 to 11.6	24.7 to 25.5		11.5 to 10.4
	Liu'18	22FDX	0.8V	28	28		16.7 13		13.5		11.2 33.8			13.1
	Aikio'18	22FDX	2.8V	28.5	28.5		9.9		18.8		14.9	23.4		~14*
	Din'18	28 FD	3.15V	24		9.7		17.9		1	16.2 7			N/A
	Mayeda'19	22FDX	N/A	28		22.1	17.3		}	•	14 29			~10
	Zong'20	22FDX	2.4V	28		27 26.1		21.7 22.5		1	19.1 27.			22.1
	Zong'21	22FDX	2.4V	28						2	21.1	26.2		19
	Rack'21	22FDX	1.6V	28	28		16.8		15.4		14	36.3		N/A
LNA		Techno	BW [GHz]	Gain [dB]	NF [o (min)	F [dB] NF [df nin) (max)				V] IIP3 [dBm]		m]	OP	1dB [dBm]
	Gao'19	22FDX	24-43	23 18.2	3.7 4.3		3.1 4.3		20.5 12.1		-16/-19 30/40 G	-		/~-5 40 GHz
	Rack'21	22FDX	36.7-49.5	19.8	2.7*	.7* 2.4*			20				3.9	
SPDT SWITCH		Techno	Topology	Freq [GHz]	Ins	Ins. Loss [dB]		B] Isolat. [dB]		B] P1dB [dBm]				rea 0 ⁻³ mm²]
	Rack'21			/ 2.6 80 GHz	25/21 60/80 GHz		19.9* 33.6* 60GHz 60GHz		33.6* 60GHz	14				

29


RF-SOI solution for 28GHz phase-array beam formers FEM

- RF-SOI provides high-level of digital/analog integration
 - required for bias/gain/phase control
 - and available memory blocks for large beam tables storing
- High-output power (>20 dBm) and gain (>30 dB), as well as breakdown voltage
- Fast and highly linear RF switches (best-in-class)
- Technology of choice for fixed-wireless CPEs and mobile infrastructure in urban environments

28GHz 16 channel beamformer on 45 nm SOI CMOS

Diagram of large-scale mmW phased array using 2x2 dual-pol. beamforming FEM

Source: MixComm

seitec

Disclaimer - non confidential

SOITEC PROPRIETARY

Any unauthorized reproduction, disclosure, or distribution of copies by any person of any portion of this work may be a violation of Copyright Laws, could result in the awarding of Damages for infringement, and may result in further civil and criminal penalties. All rights reserved. Copyright ©2021 SOITEC.

