

SEMICON Europa

November 2021

Automotive Semiconductor Reliability – Contamination Management and Maturity of the Ecosystems

Antoine Amade VP of Sales, EMEA/NA Microcontamination Control Division

Entegris at a Glance

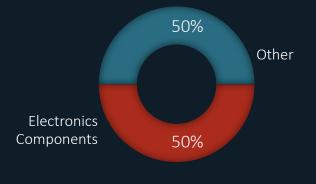
A world-class supplier of advanced materials and process solutions for the semiconductor, life sciences, and other high-tech industries

Business Divisions

Advanced Materials Handling (AMH) Microcontamination Control (MC) Specialty Chemicals and Engineered Materials (SCEM)

Our Mission

To help our customers improve their productivity, performance and technology by providing enhanced materials and process solutions for the most advanced manufacturing environments


90% of auto innovation is driven by electronics

Quality \longleftrightarrow Speed

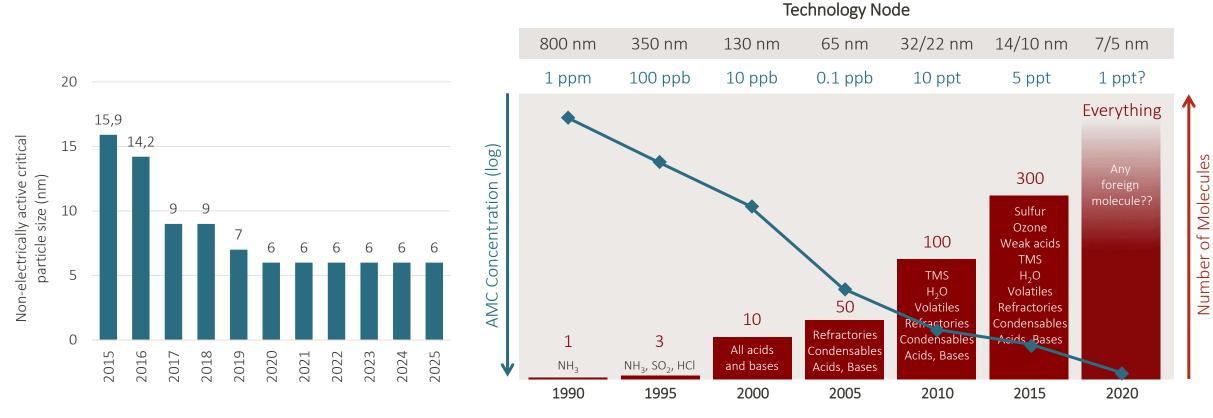
Expected 2030 Car Costs

Are we underperforming or overperforming?

Consumer Electronics <1,000 ppm

Automotive 100% reliability over 15 years

The Necessity to Create Frameworks



Best practices focused on the areas of manufacturing, test, reliability and continuous improvement methods

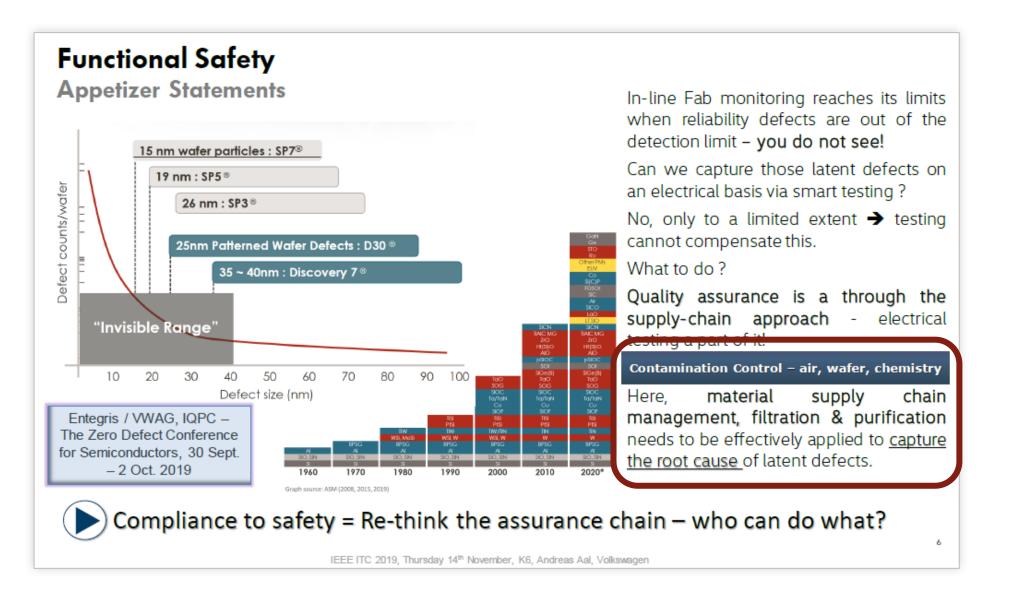
Au

Pervasive Contamination

Critical particle size and total metals identified by the IRDS roadmap

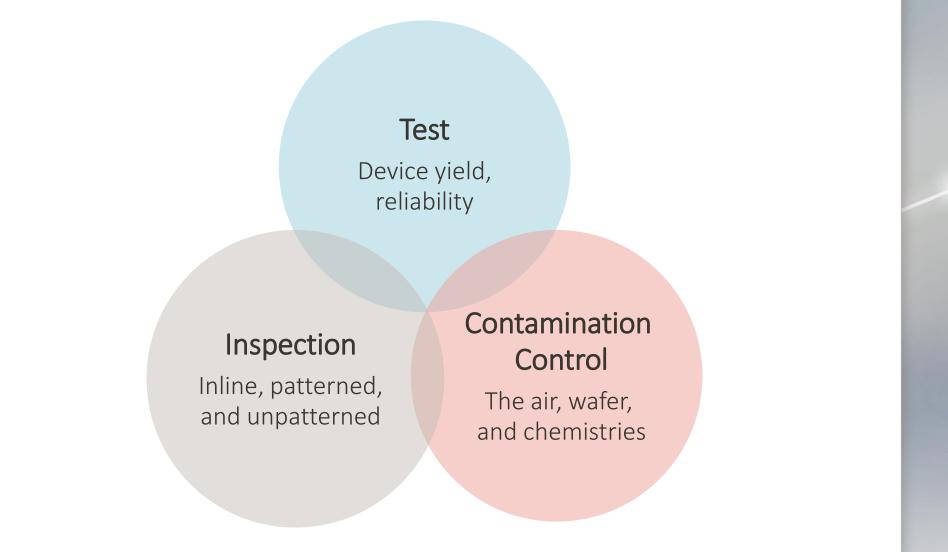
AMC contamination concerns by technology node

A range of contaminants that cannot be seen

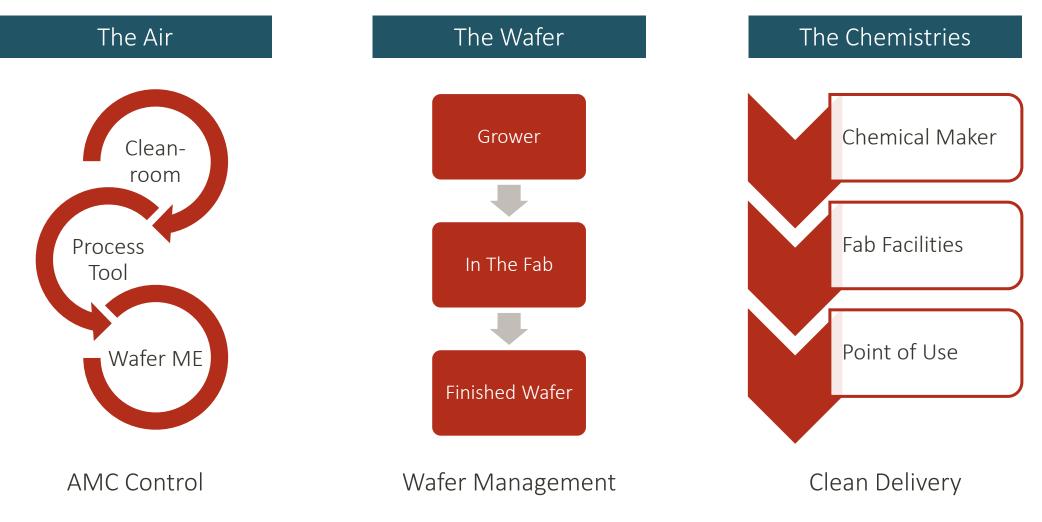


"Absence of evidence is not evidence of absence"

Martin J. Rees, astrophysicist



Capture the Root Cause of Latent Defects


Addressing Weak Links in Auto Reliability

Improve baseline and reduce excursions

Contamination Management Strategy

Third Generation of Contamination Control

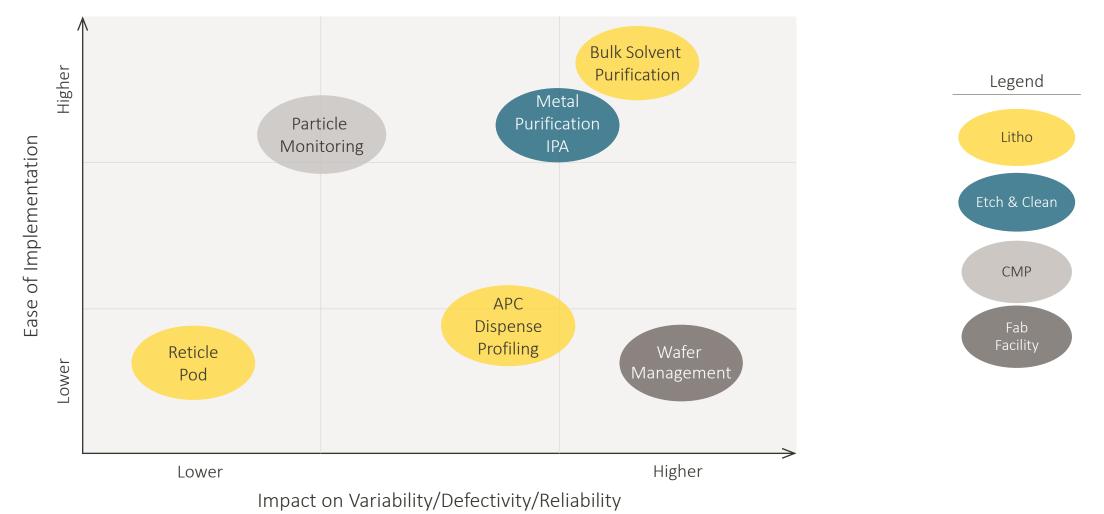
At the junction of fabs, tool makers, wafer growers, and chemical manufacturers

Air Equipment Materials							
Implant	nt Lithography Deposition Dry Etch Wet Clean CMP Fab Facility						
Safe Gas Delivery Systems	Advanced Photoresist Packaging	CVD/ALD Precursors	Gas Diffusers	Formulated Cleans	Formulated Cleans	Advanced FOUPs	
Electrostatic Chucks	Filtration and Dispense	Copper Plating	Gas Filters	Liquid Filtration	Liquid Filtration	AMC Filtration	
Gas Purification	Gas/Liquid Purification	Gas Filtration and Purification	Gas Purification	Fluid Handling and Sensing	Brushes And Pad Conditioners	Bulk Chemical Delivery	
Specialty Gases	Reticle Pods	Fluid Handling and Sensing	Specialty Coatings	Containers	Particle and Flow Monitoring	Wafer Shippers	

How does the ecosystem perform?

	Contamination Control Solution	Location A	Location B	Location C	Location D	Location E
Lithography	Bulk Solvent Purification		•		•	
	Resist Packaging		•	•	•	
	Dispense Pumps	•	•	•	•	•
	POU Filter – Resist				•	
	POU Filter/Purifier – Solvent		•		•	
	Reticle Pod		•	•	•	
	AMC Filter	•		•	•	•
Etch and	Bulk Filter	•	•			•
Clean	POU Filter – FEOL	•		•		•
	POU Filter – BEOL	•		•		•
	Metal Purification DIW	•	•	•	•	•
	Metal Purification IPA	•	•			•
	Post-Etch Clean			•	•	
СМР	Bulk Filter	•	•	•	•	
	Particle Monitoring			•	•	
	Concentration Monitoring			•	•	•
	CMP FEOL POT Filter	•		•		•
	CMP BEOL POT Filter	•				•
	Pad Conditioner	•			•	•
	Brush	•			•	•
	Post-CMP Clean		•	•	•	
Deposition	CVD Deposition Precursor Delivery		•	•	•	
	Plating Chemistries		•	•	•	
	Cu Plating Filtration		•	•	•	
Implant	GeF4		•	•	•	•
	Insitu cleaning gas					
	Gas AsH3		•			•
	Gas PH3		•	•	•	•
	Gas BF3			•	•	•
Fab Facility	Bulk Gas Purification				•	
	AMC Filter		•	•	•	
	FOUP or SMIF Pods	•				
	Finished Wafer Shipper (HWS)					

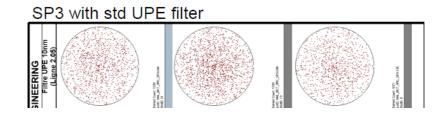
Benchmark for contamination control


- A list of reference
- A comparator
- A tool
- An indicator of maturity

When compared to the optimized solution, the current solution in place:

- Not adequate
- Can be improved
- Equal or better
- 🔘 Not known

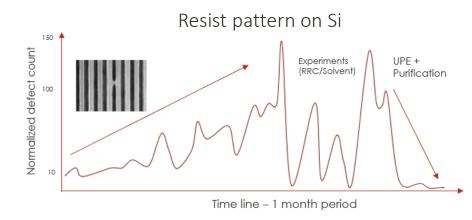
Benchmark – Hot Topics for Location X



Metallic Purification in Photo Litho

Problem Statement

At resist reduced consumption (RRC) solvent prewet step, the **EC solvent** brings an **extra source of defects**, which can be trapped at the Si-Resist interface

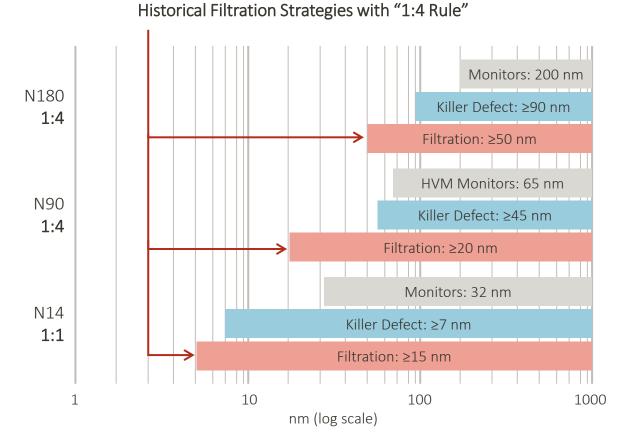

Approach Taken

Single line open (SLO) defect density correlates with a drift of metal compounds concentration in incoming EC_solvent

The benefit of using ultraclean pre-wet solvent are clearly identified and have been discussed in literature

Ultra pure solvent can be obtained by purifying solvent at POU or improving EC_solvent specifications from supplier

Results


Lessons Learned

Upgrade **particle filtration stage** from 10 nm UPE to **3 nm UPE** Widespread usage of **solvent purification** and UPE 3 nm filtration at POU for improvement of stack defectivity

Upgrade facilities solvent filtration into purification

New Filtration Strategies with Auto IC

Improvement of Latent Defect Management with "1:10 Rule"

Maturity of the Ecosystems

	90	65	28	10/7	
Lithography					
Etch and Clean					A new engagement model is required
CMP					
Deposition					
Implant					
Fab Facility					Minimum 75% of the players have the adequate solution in place Between 50% and 75% of the players have the adequate solution in place
					Less than 50% of the players have the adequate solution in place

Correlation with Technology

Logic Technology Inflection Points*

					Major inflec
0,25 μm	90 nm	28 nm	10 nm	5 nm	trigger to ra
	Copper BEOL	High-к Metal Gate	Cobalt Contacts	NODE NODE New Metallurgies Nanowire Device	
DUV 248 nm	193 nm	Immersion Multiple Patterning	EUV	EUV High NA Self Assembly	Advanced no greatly impa contaminati
	Strain Engineering		FinFET Device	Monolithic Sequential 3DIC	

ction points – a adical changes

nodes – bacted by tion

Learn and Leverage

Be closer to the technology driver, improve yield, and apply knowledge to mainstream's reliability

It is only the beginning of the journey...

Proactivity is better

Designing Quality in the System

Improve total quality without relying solely on inspection and testing

A New Collaborative Approach

Holistic – Test, inspection and contamination control

"The Air, the Wafer, the Chemistries"

Maintain the strategy over the long term

Links to joint paper and panel discussion:

<u>A Collaborative Approach</u> for Automotive Electronics (semiconductordigest.com) April/May 2021 edition

<u>SEMI – ENTEGRIS – CARIAD</u> <u>SE (Volkswagen) Panel</u> <u>Discussion | SEMI</u> July 2021

Thank you!

Entegris®, the Entegris Rings Design®, and other product names are trademarks of Entegris, Inc. as listed on entegris.com/trademarks. All product names, logos, and company names are trademarks or registered trademarks of their respective owners. Use of them does not imply any affiliation, sponsorship, or endorsement by the trademark owner. ©2021 Entegris, Inc. All rights reserved.

10.

