

Advances in X-ray Metrology under MADEin4

16 November 2021

Dr. Juliette van der Meer

Overview Bruker and X-ray Metrology What's Next Scope and Goals in MADEin4 XRF, TXRF Semiconductor Applications Advances Made in MADEin4

Bruker Organization

Bruker BioSpin Group

- NMR/EPR for Research & Pharma
- Applied, Industrial & Clinical MR
- Preclinical Imaging
- Services & Life-Cycle Support

Bruker CALID Group

- Mass Spectrometry for Proteomics, Applied & Pharma
- FTIR/Raman for Applied Markets
- CBRNE Detection for Security

Bruker NANO Group

MADEin4

- Advanced Semiconductor Metrology
- 3D Optical and Stylus profiling
- Atomic Force Microscopy
- X-Ray for Materials Research, QC
- Tribology and mechanical testing

Bruker Semiconductor X-ray Metrology and Inspection Techniques

Scope and Goals MADEin4

- Bruker is partner in the Metrology work package of MADEin4
- WP3: Metrology platform developments for enhanced productivity
- Subtask 3.1.2: Metrology for front-and back-end process characterization
 - µXRF for metal thickness and composition
 - Assessing prototype of latest Liquid Metal Jet X-ray source from Excillum
 - Goal: increase µXRF flux with 10x, keeping the small spot size
- Subtask 3.1.4: Metrology for contamination control
 - TXRF for metal contamination monitoring
 - Goal: increase light element sensitivity by 10x; increase throughput by 2x

Thickness, Composition by XRF

XRF

- Radiative transitions between different atomic shells result in a discrete series of X-ray energies (lines).
 - K or L lines are commonly used for XRF analysis of metals in air.
- Each element has a unique series of lines and the intensity is proportional to the number of atoms.
 - Qualitative analysis
 - Quantitative analysis –after calibration-
 - Thickness
 - Concentrations

M ADEin4

2021-11-16

7

Bruker MADEin4 Semicon Europa 2021 |

µXRF Metrology Channel for Inline Process Monitoring

- Microfocus X-ray sources, anode material depends on applications
 - Mo, Cu, Rh, W are common state-of-the-art materials
 - Small spot (FWHM of 25μm, optional 15μm or 35μm)
 - Low sensitivity to Z-errors
 - Small edge exclusion
- Detection
 - Up to four quadrant SDD detectors for efficient photon collection
- Accurate positioning
 - Automatic pattern recognition for accurate positioning on small features
- Benefits
 - Fast
 - Non-destructive

3D-NAND: W Recess Control with µXRF

• Changes in W recess are ~ 1% of volume, therefore very high sensitivity is required ($3\sigma < 0.15\%$)

 Fast measurements allow creation of very dense maps, small beam enables EE <1mm

Sample	Recess	POR vs DOE (ΔI)	center and edge (Δ I)
А	High	-0.5%	1.1%
В	POR	0%	1.6%
С	Low	+0.9%	2.0%

Intensity differences comparison at the wafer center

Typical 3D-NAND stack (left); W recess in OWOW pairs (Right)

Thickness of Electroless Plating Stacks with µXRF

- Pad metallization
- 200-300nm Pd on 2000-3000 nm of Ni on thick Cu
- Thickness of each layer in tens of seconds
 - <1% for Pd</p>
 - 0.3% for Ni

Advanced Wafer Level Packaging Process Control with µXRF

- Applications
 - % Ag in Sn-Ag solders controls reflow temperature
 - Solder and under-bumps metal height (thickness)
 resistivity and planarity
- µXRF for advanced WLP, specifically for next bumps generation

Contamination Control by TXRF

Total Reflection and the Standing Wave

- Total Reflection: incident angle < critical angle
- Generation of X-ray Standing Wave Field over the surface of the reflector
 - Constructive interaction of the incident monochromatic beam and the totally reflected beam
- Contaminant is excited twice: once by the incident X-ray beam and again by the reflected beam
 - Amplification of the X-ray fluorescence signals
- Background contribution is minimized
 - Monochromatic excitation
 - No penetration into the substrate
 - Working in vacuum (in most cases)
- Excellent detection limits

Yield Optimization is the Key Driver

- Yield is the "single most important factor in overall costs", thus optimization gives a competitive advantage (McKinsey 2018)
 - "one semiconductor player in Asia and America" saved \$12M in 6 months by improving yield monitoring
- Contamination control is essential, as contamination counts for 10% of overall yield loss
- <u>Metallic</u> contaminants degrade silicon device performance in a variety of ways
- Every processing step can contribute to contamination
 - Equipment: deposition systems, mechanical, gas piping
 - Human: process engineers or factory operators
 - Materials: chemicals, etchants, D.I. water
 - Process: contamination from all above sources

Advances Made in MADEin4

Subtask 3.1.2 µXRF Enhancements

- Assessment of Excillum's Liquid Metal Jet source with Ga liquid anode
- Benchmark against state-of-the-art solid anodes

- Similar optics as in a conventional µXRF system
- State-of-the-art SDD (Silicon Drift Detector)

MADEin4

excillum

Increased Intensity with the Excillum Liquid Metal Jet X-ray Source

µXRF tests with MetalJet

Layer	Projected improvement*
TiN 100Å (DRAM)	5-10X
W 2000Å (W plug)	>10X

*in <u>acquisition time</u>, **compared to state**of-the-art maintaining 3σ<1%.

End User Advantage

- Increased throughput of µXRF metrology for nanoelectronics process control
- Enhanced productivity for at-line and in-line µXRF metrology

Initial Findings

- Great improvement in fluorescence intensity on known samples.
- Spot size fits the requirements.

	Liquid Metal Jet	Common solid anode
Power density	Superior to SotA anodes	Limited
Optics	May need adaption	Optimized
Beam path	Horizontal	360° freedom

3.1.4 TXRF Enhancements

- Optimization of the light element beam path to boost the sensitivity for Na, Mg, Al.
- Implementation of optical sensor-based wafer alignment for increased throughput.

Improved Light Element Analysis with TXRF

- 3 X-ray sources for optimum elemental sensitivity
 - ME (W-Lb): transition elements
 - HE (Ag-Ka): best sensitivity for heavy elements
 - LE (W-Ma): optimized channel for light elements
- Optimized detectors for each element range
 - Large SDD for transition/heavy elements
 - Optimized thin window SDD for light elements

			W	Ma	٦٢	W Lb Ag Ka					_					He	
Li	Be	B C N O								F	Ne						
Na	Mg									AI	Si	Ρ	S	CI	Ar		
к	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Th Pa					Ра	U	Np	Pu	Am								

Element	LLD (at/cm²)*	Channel
Al	<1E11	LE (W Ma)
Ni	1E9	ME (W Lb)
Zr	1E9	HE (Ag Ka)

* Acquisition time 1000s

Fast Full Wafer Maps with 0 mm Edge Exclusion

- Identification of the contamination <u>and</u> of its location on the wafer
 - Identify root cause of contamination, e.g. suspect process equipment
- Non-destructive analysis
- Zero edge exclusion
- Fast: 100% coverage of 200mm wafer in <27 min</p>
 - With sample alignment at every site

Output: wafer map per element, at 2x higher throughput.

Outlook

- μXRF is already in HVM, but if the performance can be improved compared to the state-of-the art system, it opens the door for more applications, especially in advanced logic and memory.
- Bruker will continue to collaborate with Excillum to push the sensitivity of µXRF.
- Future focus on localized hazardous elements and metal contamination detection.

Thank you!

juliette.vandermeer@bruker.com

