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Applied Materials in Israel

= ~1,700 Employees
» ~79% RD&E (including Application
Engineers, Product Support, other)

= Facilities: 613,000 sq. feet
» Clean Rooms & Labs: 49,000 sq. feet

Research Development
& Manufacturing Center
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Optical Wafer Inspection Introduction

Optical Wafer Inspection Challenges in MADEIn4

Optical Wafer Inspection Computing Development: Methodology & Solutions
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Challenge 1: Defects Images Grabbing

Challenge 2: Accessing Address Space of the Image’s Grabber

Challenge 3: Image Processing

Success Story & Summary
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Optical Wafer Inspection (OPW!I) Introduction

https://mwww.appliedmaterials.com/products/enlight
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https://www.appliedmaterials.com/products/enlight

Optical Wafer Inspection (OPW!I) Challenges in MADEIn4
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Main challenges:
» Defectsimages grabbing; high bandwidth channel data acquisition

» Accessing address space of the image's grabber; rapid accessing of large DDR memory

» Image processing; throughout, utilization & processing capabilities

High-end incoming data rate ~Tens GB/s

Acquisition path directly from detectorto computing system

Extreme real-time processing demands

Hybrid image processing algorithms on Hybrid HW architecture

» Conventional computervision algorithms

» Advanced Al / Deep Learning algorithms

Advanced eco-system

» Huge storage for data recording & re-injection

» Support massive injection from external Computer Aided Design (CAD) data base
» Support automatically advanced & complex Deep Learning based algorithms
Highly efficient cost/performance computing (cost limitation)

Computing cabinets footprint limitations

Fab noise restriction & limitations

Power limitation, high reliability (24/7)

No external cloud connectivity due to FAB IP limitations

Scalability for more advanced algorithms
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Optical inspection

Optical scan water map with millions
of unclassified potential defects
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OPWI Development: Methodology & Solutions Optimized HPC Server

Methodology

= Since OPWI must keep pace with transistor design shrink, Off-
the-Shelf (OTS) components must be considered for appropriate
Time To Market (TTM) with the following optimizations:

SW architecture T

B,

OTS accelerator/GPU

HW architecture and configuration
Network connectivity

Load balancing

? *

ource:www. nvidia.com

Processing dispatching Cablnet

rrrrrrrrrrrrrrr

Data Acquisition path

know your architecture
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OPWI Development: Methodology & Solutions Optimized HPC Server

Solutions:

= Integrated OTS components for creating advanced
optimized & customized solution

= Select smartly the most appropriate:
» Server architecture for your use case application
» Accelerator/GPU for your use case

= Design your Acquisition path with generic components g
as much a possible directly from detectors B e

= Plan compact computer cabinet — minimal footprint

Network connectivity

Cabinet

Data Acquisition path

know your architecture
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Optical Defect Inspection Tools Computing Architecture

" Prodrive Prodrive
Joint dev

Joint concept Large memory DDR4

Optic
interface

Customized Dense servers

Acquisition g essing
High CPU multiple Storage
— o resolution/BW cores + up 4GPU

Frame Grabber] * Rack Server « NVMe SSD
« CXP interface * Intel Cascade Lake/ « SATA

«  FPGA processing Ice Lake
Metrology / DSP Based (Xilinx Zynq » GPU optimized
Inspection Solution Ultrascale+ ZUJ1EG) (up to 4x Tesla \f100/A100)

Tool

Unique SW-Infra structure management
Cabinet customized infra-structure

Advanced New
Image Processing Systerg Special
Fast Ethernet Cabinet+Grabber
interface interface APPLIED

MATERIALS«

Existing
Image Processinsss

Prodrive

Joint Dev
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Challenge 1: Defects Images Grabbing

High bandwidth channel data acquisition
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Problem statement: grabbing the data to
> 300GBytes of DDR4 memory
Solution:

» Advanced devices integration:

— Processing sub system: ARM based system
with common interfaces

— Programmable logic: FPGA for design your
custom interface

» OTS components block design
» On-tool Advanced Debugging infra-structure

» Advanced Monitor & diagnostic Using ARM
processor

| Applied Materials External

Interfaces between the board & CPU

CTRL
DATA

5 SM Bus:
5 - optional
b

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Data Flow from detector to server

Laser
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Intel CPU

Grabber Board

USB:
- UART:
- Configure network
- Fatal Errors Debug
- JTAG: Debug the FW
- |0 Expender:
- Accessing Board
HW Devices
- Resetting Devices
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Callanagel: High speed connectivity — FPGA Interfaces & Design

e al’ s I w e : —
kL by B0 I:; niy b4 m:.;.;: Erap— ..-::.Mm.mﬂ; o

e : Grabber

[

= |mmm e
}: — 1 Processing |
w:_,,mE = L _subsystem i
iy e e

At e " Brogramable |
125 2 i

=- e O ::-‘.:ﬂ- L__ng___l

F

Generic FPGA interfaces without need to write special code — VHDL free design for fast
development, mature design & enhanced performance, already optimized modules such as DMA &
AXI-Connect
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Challenge 2: Accessing Address Space of the Image Grabber
Rapid accessing of large DDR memory
*= Problem statement: there is no available solution for accessinglarge DDR memory address space for wafer
optical inspection scenarios
» Algorithms require multiple random memory operations in parallel up to 200K image patches per second

» Since the application uses huge memory, the translation lookaside buffer (TLB) cannot hold the entire address
space which results in low memory access performance

~ cpu e N / \

{Fast but
limited page
table)

TLE Miss

—— e

Page
Table

(Slow)
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Challenge 2: Utilizing Large DDR Memory
Gain rapid accessing x10 vs. Naive implementation

= Solutions & Optimizations:

»

»

»

»

»

»

»

Linux makes it easP/ to use memor allocation Pages of 1GB: this
reduces S|gn|f|cant%/ the number of pages used by the OS, so most of
them can reside in the TLB

Split the memol\x between the CPU sockets: use non-uniform memory
accessmg NUMA) architecture that enables faster parallel memory
access

Allocate 300GB of memory at boot time: ensure Huge Pages availability
before any SW is running

Image split into 1GB fragments: guarantee more than 1GB of contiguous
physical memory

Linux open-source SW library (hugetlbfs): enables user friendly access
to the pre-allocated memory

FPGA interface: develop a bilateral translation module between Physical
and Virtual Address spaces

TLB access: use Memory Warm Up — pushing actively the huge memory
pages into the TLB before receiving wafer image

12 | Applied Materials External

Hybrid DDR access description

Grabber board
Physical Address Space

PCIE
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Challenge 3: Image Processing
Throughout, utilization & processing capabilities

Problem statement: upon data arrival ( GB/s) defect detection requires: [ seve
» Arranging the data (e.g. clip the images around defects) ~aropou ) ((densen ) -
» Processing (e.g. align the clipped images) ~d

» Heavy pixel crunching to distinguish signal from noise and detect s —
defects ~ |

— Computer vision !
— Deep Learning neural network model

» Get complementary data and combine it as part of the algorithm (e.qg.
CAD data) - -

Hybrid approach: CPU & GPU in Massive data processing
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Challenge 3 Optimization Techniques for Processing Acceleration

) ) . Server
= Solutions Guidelines:

Evaluate overall processing capabilities: [ cPucores || cache |
- GPU, CPU cores, what is the theoretical vs. practical

performance CENETES o) -
- GPU FP16 maximal theoretical 320Tops, in our use case Memery
D ED

TURING TENSOR CORES TURING TENSOR CORES TURING TENSOR CORES
2l TS

— Accuracy: single precision 32bits, 16 bits, int8 ?

|-~ Output segmentation

- using upumizea GPU TIDrary Tor special cases
(e.g.XLA library)

https:/Aww.inag.ufscar. br/projects/conv-neural-networks-1
14 | Applied Materials External @ ﬁETEHEE



Innovated Optimization techniques for Processing Acceleration
Overlap memory with logic and algorithm adaptation

Solution 1;

= Qverlap memory with processing on GPU
improve the x1.3 (save 10)

» Apply NVIDIA stream's infra-structure

FP16 or FP32

. . . @ NVIDIA Nsight Systems 2891.2.1 - X
» Optimize the convolution layers to better
adapt the ge ne ral I\/I atrIX mu |t| pll C atl O n PTOJ'GC.T‘EX::ZF;C e X 5_16bitqdrep X unet_fp16_inference trtqdrep X unet16_applied bs256.qdrep X PyTorch Benchmark fp16 Pinned.qdrep X Inferenc MultiPersp.gdrep X ‘_ |
(G E M) Wh i C h iS not C . nVO Ive d (not ‘ Inferenc_unet fp16. mod.. = Timeline View v @\ 1x LS 5 warnings, 22 messages
‘ Inferenc unet fp16_mod,. +600ms +700ms +800ms =

(EERALEIN 175 545.5ms

‘ Inferenc_unet_fp16_mod... + Processes 2)

PASCAL

Source:www. nvidia.com D
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Innovated Optimization Technigues for Processing Acceleration

Optimized CPU cores using advanced VNNI-AVX512 instructions

Solution 2:

= VNNI-AVX-512 Vector Neural Network Instructions (VNNI) - x86
= Implementefficiently computer vision on server cores

512-bit

8-bit
|_

SRC 1 |AjA;|A;|A;

SRC 2 |Bo|B;|B;|B;

A,B,+A;B,
+A,B,+A;B;
+GC,

32-bit
SRC 3| G, Cys
A B,+A,B Bgo+AgB
D ES T + ; 2£2c +A1:-|=El:-|= &:2522 +l“f:3|§:3
+C, 15
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Success story: Tensor Flow Open-Source Contribution

= Testing and benchmarking of combined
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processing mode over CPU + GPU

= Average processing min: 243ms, max:
352ms, mean:. 272ms

* Finding BUG in Google Tensor Flow
memory management

Gal Popovich 4:36 PM
https://github.com/tensorflow/tensorflow/issues/35524
open bug for tensorflow (google)

memory leak when loading model used as a reference for other bugs developers opened.
most likely helped to fix the bug in the new tensorflow version 2.2

Suspected memory leak - when loading multiple models wit...
Please make sure that this is a bug. As per our GitHub Policy, we only
address code/doc bugs, performance issues, feature requests and...
github.com

350

https://github.com/tensorflow/tensorflow/issues/35524

Solving a bug found by AMIL enabled efficient CPU+GPU hybrid processing

17 | Applied Materials External
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https://github.com/tensorflow/tensorflow/issues/35524

Summary

= Adapting OTS components for the next generation ODW!| yielded:
» Highly cost-effective solution
» Performadvanced & complex algorithms
» Grabbing very high data rates for serving real-time requirements

= ‘Know your architecture’ approach improved the inspection computing
performance by a significant factor of X10 by:

» Algorithm to hardware components optimizations (e.g. GEMM)
» Memory configuration optimizations (large DDR page & TLB)

= Madein4 development can be exploited for computing intensive tools

Viater -
Wate Map y | | Bright Fueld Corrant | Bright Faeld Next Bright Feld D fference

Gray Feld Current Gray Feld Next Gray Field Difference
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