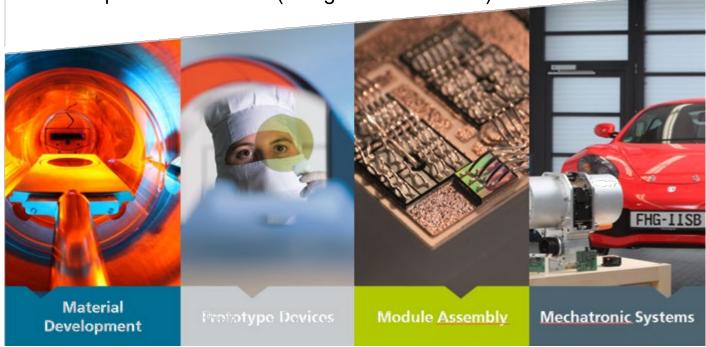
SiC Power MOS technology evolution

Sustainable and efficient energy conversion in DC grids

SEMICON Europa 2021, Munich

November 19th 2021

T. Erlbacher


Fraunhofer Institute for Integrated Systems and Device Technology IISB Erlangen, Germany

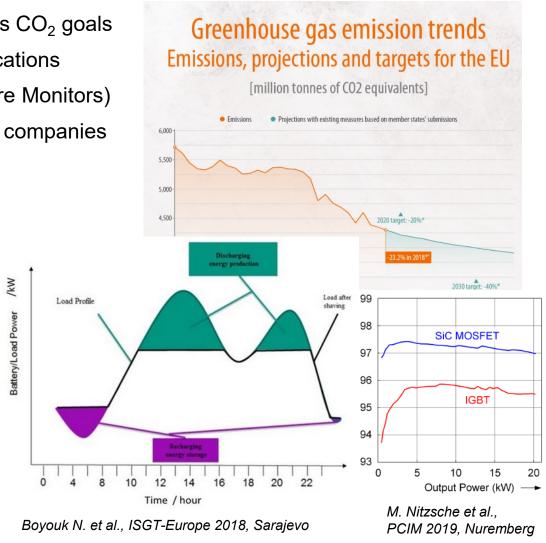
Fraunhofer IISB: Wide-bandgap for Power electronics

Research and Development in Applied Science (Non-profit organization)

From materials to power electronics (along the value chain)

- On the go from R&D through Prototypes to Small volume fabrication
 - R&D activities along vertically integrated value chain (internal customers!)
 - 150mm SiC CMOS technology platform with qualified process modules

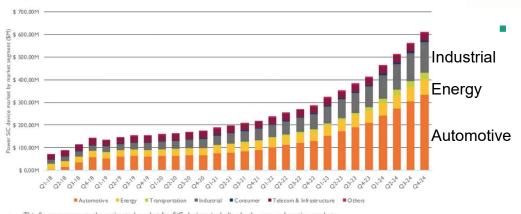
- Sustainability through energy efficient DC grids
 - CO₂ neutrality: Reduction and energy efficiency
 - Motivation, competition and market situation for SiC devices
 - SiC Devices: From electric vehicles to DC grids infrastructure
- Evolution of SiC Power MOS technology
 - Planar technology, wafer material and unit cell optimization
 - Trade-offs between performance, reliability and yield
 - Challenges for further advancements and moving targets
- Possible goals for further tool optimization
 - High temperature processing: Oxidation, implantation, high-temperature annealing
 - Lithography, SiC Trench etching ohmic contacts, Wafer thinning
- Opportunities and Conclusion



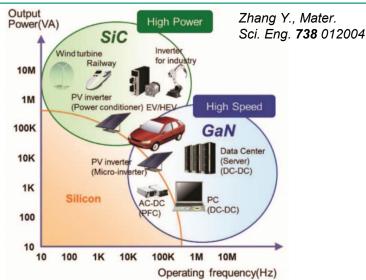
- Sustainability through energy efficient DC grids
 - CO₂ neutrality: Reduction and energy efficiency
 - Motivation, competition and market situation for SiC devices
 - SiC Devices: From electric vehicles to DC grids infrastructure
- Evolution of SiC Power MOS technology
 - Planar technology, wafer material and unit cell optimization
 - Trade-offs between performance, reliability and yield
 - Challenges for further advancements and moving targets
- Possible goals for further tool optimization
 - High temperature processing: Oxidation, implantation, high-temperature annealing
 - Lithography, SiC Trench etching ohmic contacts, Wafer thinning
- Opportunities and Conclusion

Sustainability through energy efficient DC grids

- Energy efficiency contributes to EU's CO₂ goals
 - Ecological and economical implications
 - Laws and regulations (compare Monitors)
 - Prestige and responsibility for companies
- SiC (WBG) converters offer excellent partial load properties
 - Up to 10% more efficiency compared to silicon topologies
 - Every time energy is transferred
 - Generation
 - Storage (Recuperation)
 - Consumption
 - Applicable to any source of electrical energy consumption (broad range)

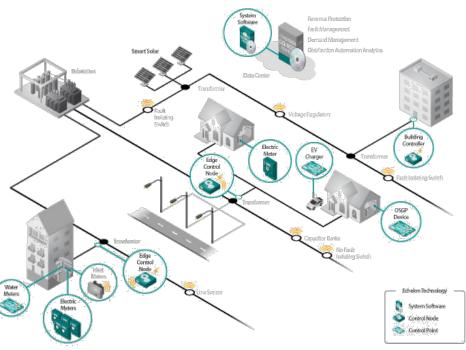


Sustainability through energy efficient DC grids


- Motivation, competition and market situation for SiC devices
 - Competition zone Si/SiC/GaN
 - SiC excels at 600V and above
 - High reliability demonstrated
 - Reduction of fabrication cost

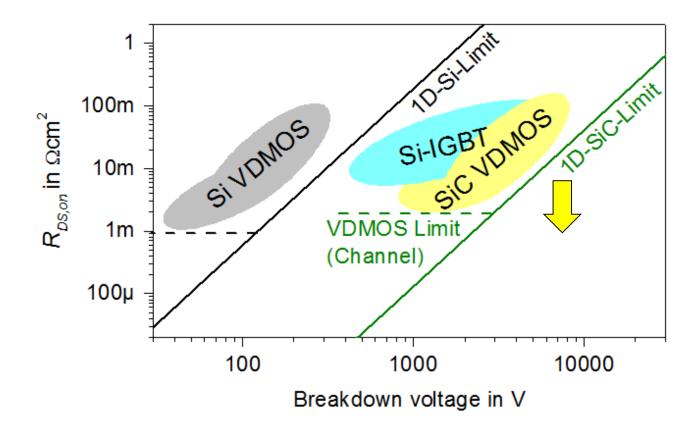
Power SiC device market Forecast by segment (Source: CS Market Monitor, Yole Développement, 04 2019)

- This figure represents the estimated market for SiC devices, including both open and captive markets.
- The ramp up of automotive market in 2018 was mainly due to Tesla's adoption of SiC in its main inverter.
- . Similar to automotive application, other applications such as industrial, energy and transportation are expected to grow.

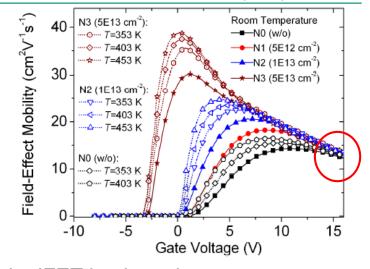


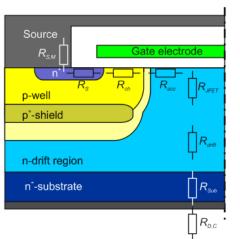
- Power SiC market trends
- Ramp-up is imminent
 - Tesla and Toyota kicked it off
 - OEMs are following now
- Increase in Fab capacity
 - Fab extensions (150/200mm)& Pure-play foundries
 - "Crazy China"

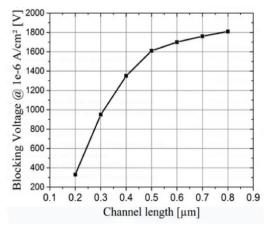
Sustainability through energy efficient DC grids

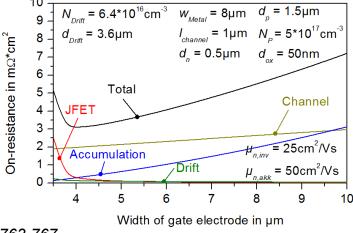

- Reduction of transmission losses using SiC-based switch-mode power supplies
 - Automotive traction inverters and converters are paving the way...
 - Broad range of generation and consumption for DC grids
 - PV and Wind Power
 - Electrical storage
 - **EV** Charging infrastructure
 - Manufacturing tools / factories (regulated motors)
 - H2 generation (hydrolysis)
 - Lighting
 - Usually partial load conditions
 - Peak loads are the exception
 - → Converter designed for peaks
 - Load shifting or Peak shaving?

- Sustainability through energy efficient DC grids
 - CO₂ neutrality: Reduction and energy efficiency
 - Motivation, competition and market situation for SiC devices
 - SiC Devices: From electric vehicles to DC grids infrastructure
- Evolution of SiC Power MOS technology
 - Planar technology, wafer material and unit cell optimization
 - Trade-offs between performance, reliability and yield
 - Challenges for further advancements and moving targets
- Possible goals for further tool optimization
 - High temperature processing: Oxidation, implantation, high-temperature annealing
 - Lithography, SiC Trench etching ohmic contacts, Wafer thinning
- Opportunities and Conclusion

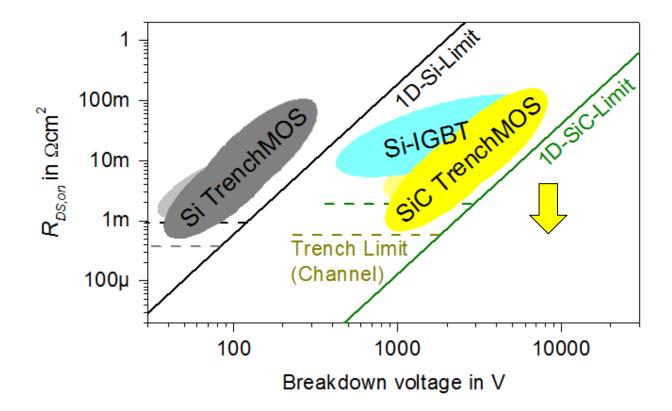

- Task 1: Reduction of On-State resistance to minimize die size/cost
 - Technology development depends on voltage rating

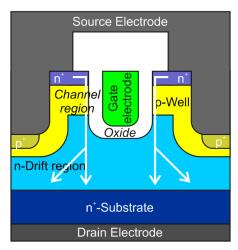



Strenger et al., Mat. Sci. Forum 740-742 (2013), 537

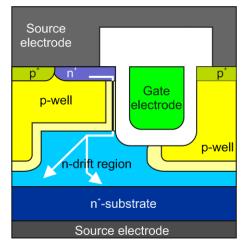

- Task 1: Reduction of On-State resistance
 - Improvements in channel mobility
 - Reduction of interface states by POA at 1300°C in NO
 - Channel mobility gradually increased to 20 cm²/Vs at $V_{gs,max}$
 - Shielding of gate oxide required: p*-shield

Shrinking of unit cell: e.g. reduced channel length, JFET implantation

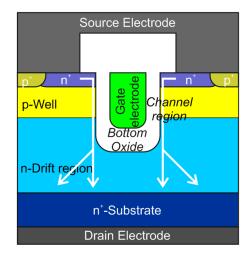



H. Schlichting et al., Mat. Sci. Forum 963 (2019) 763-767

- Task 1: Reduction of On-State resistance to minimize die size/cost
 - Technology development depends on voltage rating

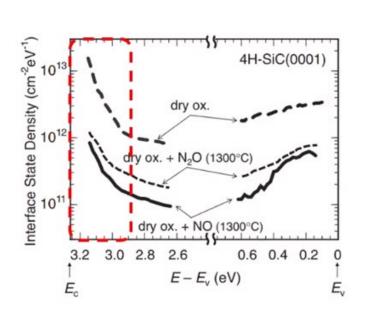


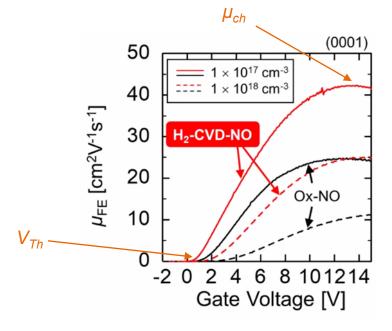
- Task 1: Reduction of On-State resistance
 - Implementation of trench gates
 - Increased channel mobility along (1 1 -2 0) orientation
 - Vertical channel → Pitch reduction compared to VDMOS
 - Shielding of trench bottom oxide vital!


Examples of practical SiC Trench MOS concepts

Rohm / MaxPower Double Trench

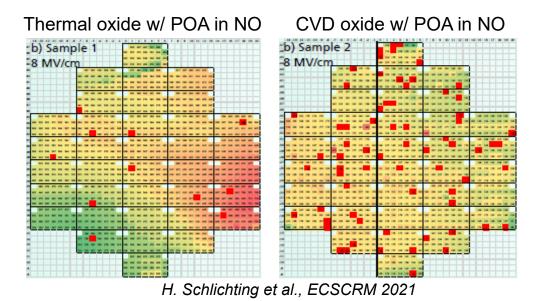
Peters et al., Power-Mag 3 (2017)

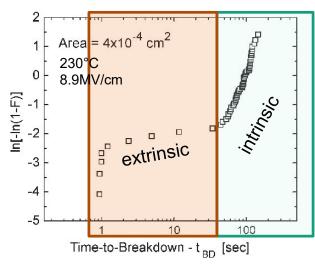



Banzhaf et al. MSF 858 (2016) 848-851

© Fraunhofer IISB

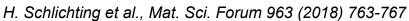
- Task 2: Design for <u>Reliability</u>, Manufacturability and Ruggedness
 - On-state resistance can be "traded off" to achieve application specific goals
 - Example: Gate oxide reliability
 - Choice of gate oxide affects channel resistance (thickness, mobility, V_{th} etc.)
 - Oxide capacitance & Maximum gate voltage

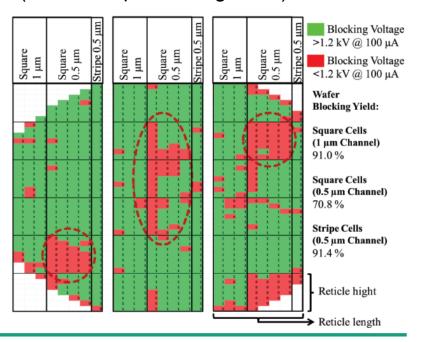




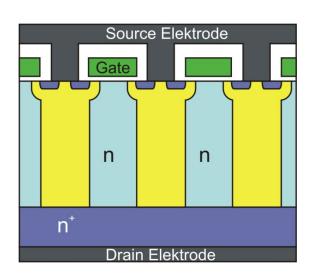
K. Tachiki et al., ECSCRM 2021

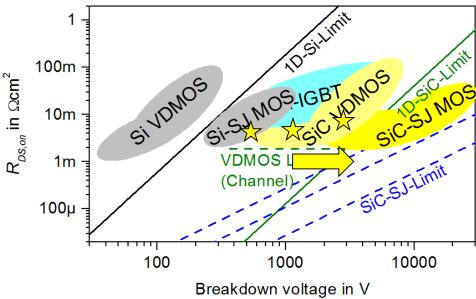

- Task 2: Design for Reliability, Manufacturability and Ruggedness
 - On-state resistance can be "traded off" to achieve application specific goals
 - Example: Gate oxide reliability
 - Choice of gate oxide affects channel resistance (thickness, mobility, V_{th} etc.)
 - Oxide capacitance & Maximum gate voltage
 - Gate oxide thickness also affects lifetime and Defect density, which can be traded-off against Yield (Burn-in)



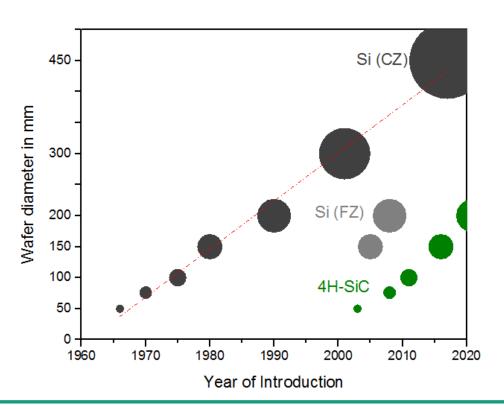


M. Gurfinkel et al., IEEE Trans Dev. Mat. Reliab. 8 (2009) 635


- Task 2: Design for Reliability, <u>Manufacturability</u> and Ruggedness
 - On-state resistance can be "traded off" to achieve application specific goals
 - Example: Integration density limited by overlay accuracy
 - Cell shrink minimizes on-state resistance → But lack of self-aligned gate process
 - Device variations and leakage currents emanate from overlay limitations
 - Self-aligned channel formation technique (additional processing effort)



- Challenges for further advancements
 - Unipolar high voltage devices
 - Superjunction device topology using vertical pillar structure (approx. 60µm @ 10kV)
 - Concepts (similar to Infineon / Toshiba solutions in Silicon):
 - Mid-energy ion implantation and epitaxial overgrowth (rinse & repeat)
 - High-energy ion implantation (e.g. filter implantation)
 - Deep trench etching and epitaxial refill



- Sustainability through energy efficient DC grids
 - CO₂ neutrality: Reduction and energy efficiency
 - Motivation, competition and market situation for SiC devices
 - SiC Devices: From electric vehicles to DC grids infrastructure
- Evolution of SiC Power MOS technology
 - Planar technology, wafer material and unit cell optimization
 - Trade-offs between performance, reliability and yield
 - Challenges for further advancements and moving targets
- Possible goals for further tool optimization
 - High temperature processing: Oxidation, implantation, high-temperature annealing
 - Lithography, SiC Trench etching ohmic contacts, Wafer thinning
- Opportunities and Conclusion

Possible goals for further tool optimization

- Challenges from device processing for fabrication tools
 - 200mm wafer diameter: SiC is on the go...
 - Significant cost in SiC is wafer substrate
 - Larger wafer size enables "double cost down" (per cm² wafer & processing)

Main drivers:

- Cost down
- Cost down
- 200mm Si-Fabs available
 - Application pull

Main challenges:

- High defect density
- Growing larger diameters (Restart from scratch!)
- Control of wafer bow/warp

Possible goals for further tool optimization

- Challenges from device processing for fabrication tools
 - High temperature oxidation
 - Reliability issues for gate oxide, by defects induced by epitaxy or process.
 - Need for high reliability gate oxide → optimization of defect density
 - Investigations on long-term reliability required
 - Tool assessment and optimization for HT processing have to be established
 - Implantation and high-temperature annealing
 - Al and N as "new" dopants
 - Silicon implanters are feasible, high-temperature implantation as an addon?
 - High temperature annealing requires capping layer (typically carbon)
 - General requirements
 - Difficult handling of (200 mm) wafers due to warp/bow, need for high volume feasibility
 - Transparent wafers or "back to opaqueness" or both side-by-side?
 - Low manufacturing yield, especially for trench MOSFETs

Possible goals for further tool optimization

- Challenges from device processing for fabrication tools
 - Lithography requirements are very diverse, resolution is one, but not the only factor
 - Resolution, overlay and alignment accuracy
 - High exposure field size
 - High depth-of-focus
 - High energy dose for thick photoresist
 - Wafer warpage
 - Low costs / high throughput
 - Initial wafer thickness target is 500 µm in order to reach acceptable bow/warp
 - Transition to "standard" 350 µm (for 100/150mm) or even 200 µm is anticipated
 - Backgrinding / Wafer thinning is available with laser annealing of ohmic contacts
 - Temporary wafer bonding
 - Concepts similar to silicon (90µm IGBTs) feasible, manufacturability (line yield)?

- Sustainability through energy efficient DC grids
 - CO₂ neutrality: Reduction and energy efficiency
 - Motivation, competition and market situation for SiC devices
 - SiC Devices: From electric vehicles to DC grids infrastructure
- Evolution of SiC Power MOS technology
 - Planar technology, wafer material and unit cell optimization
 - Trade-offs between performance, reliability and yield
 - Challenges for further advancements and moving targets
- Possible goals for further tool optimization
 - High temperature processing: Oxidation, implantation, high-temperature annealing
 - Lithography, SiC Trench etching ohmic contacts, Wafer thinning
- Opportunities and Conclusion

Opportunities and Conclusion

- Development of advanced SiC devices has just started
- Strong differentiation through performance, reliability, ruggedness trade-offs
 - System performance acts as guideline! Application specific solutions or

Components-of-the-shelf?

- Not all technological solutions are known
 - Roadmaps in power electronics (like ITRS) are not publicly available
 - But industry (from tools to fabs) would benefit from clear routes

Spread the word: We want you for SiC!

Check our job portal for open positions in microelectronics and SiC technology: www.iisb.fraunhofer.de/jobs

Thank you for Your-attention!

Priv.-Doz. Dr. Tobias Erlbacher Fraunhofer IISB

Schottkystrasse 10 91058 Erlangen Germany

+49 (0) 9131 761-319

tobias.erlbacher@iisb.fraunhofer.de

