Challenges and Opportunities in Semiconductor Packaging

Oreste Donzella
Executive Vice President, EPC Group
KLA Corporation

November 2021
Semiconductor Industry

“It’s Never Been a Better Time”
Semiconductors: Key Enablers of the “Data” Era

PC ERA

NETWORK ERA

INTERNET ERA

MOBILE ERA

DATA ERA

Sources: Industry data and Company estimates
The Data Era: Unprecedented Number of Market Drivers

The Data Era

everything becomes smart
producing, storing, analyzing
and transmitting an
enormous amount of data
Semiconductor Drivers: The Secular Story Continues

Artificial Intelligence | 5G Connectivity | Virtual Interaction | Mobile | Data Center | Automotive | Healthcare

![Artificial Intelligence Icon](brain.png)
![5G Connectivity Icon](5g.png)
![Virtual Interaction Icon](home.png)
![Mobile Icon](mobile.png)
![Data Center Icon](server.png)
![Automotive Icon](car.png)
![Healthcare Icon](heart.png)

Semiconductor Revenue ($B)

- Other
- Industrial
- Consumer
- PC
- Servers
- Mobile
- Automotive

Sources: Gartner
Semiconductor Technology Scaling for 50+ Years

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>g-line (436nm)</td>
<td>i-line (365nm)</td>
<td>KrF (248nm)</td>
<td>ArF (193nm)</td>
<td>ArF Immersion (193i)</td>
</tr>
</tbody>
</table>

EUV (13.5nm)

Conventional Scaling is Still Happening, But it Has Become Too Complex and Expensive
Advanced Packaging

“Everything is Changing”
Advanced Packaging: Crucial to Semiconductor Technology Roadmap

- Improved Bandwidth
- Boost in Power Performance
- New High-End Applications
- Custom Form Factors
- Increased Overall Si Area

From Device Protection to Performance Differentiation
Advanced Packaging: More Types | Higher Complexity

<table>
<thead>
<tr>
<th>Year</th>
<th>Mobile Processor</th>
<th>CPU / GPU</th>
<th>RF Packages</th>
<th>Automotive Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Flip Chip POP</td>
<td>Flip Chip BGA</td>
<td>BGA</td>
<td>QFP</td>
</tr>
<tr>
<td>2014</td>
<td>Flip Chip POP</td>
<td>Flip Chip BGA</td>
<td>Flip Chip BGA</td>
<td>QFP</td>
</tr>
<tr>
<td>2020</td>
<td>Fan-Out POP</td>
<td>2.5/3D</td>
<td>Double Sided SIP</td>
<td>QFP</td>
</tr>
<tr>
<td>2021+</td>
<td>3D Fan-Out</td>
<td>2.5/3D</td>
<td>Antenna in Package (AIP)</td>
<td>Flip Chip BGA</td>
</tr>
</tbody>
</table>
Chiplet Architectures

CPU / GPU Evolution

Flip Chip BGA

2.5/3D

Monolithic | Integrated SOC
- Verified at SOC level
- 3-5 years of Dev Time
- 100s of bugs found in silicon
- No issue

Multiple Dies | In optimal process
- Verified at IP level
- 2-3 years of Dev Time
- 100s of bugs found in silicon
- Some issue

Individual IPs | In optimal process
- Verified at IP level
- 5 year of Dev Time
- >10 bugs found in silicon
- Major post-rev

References: AMD Computex Keynote (July ’21), Intel Architecture Day ’20, and Nvidia (VLSI ’19)
Heterogeneous Integration

“The Whole is Greater than the Sum of Parts”
Heterogeneous Integration: Scaling While Keeping Costs Down

- From system on chip (SOC) to chiplets
- High cost only for core functionalities
- Disaggregation of the non-core functionalities
- Heterogeneous integration via packaging
The Known-Good Die (KGD) Problem With Chiplets

How are defective chiplets escaping?

Function of fab yield and test coverage

Bare die test limitations

Chiplet test escapes from wafer sort at 98% test coverage for various escape models

Number of Escapes Depends on Test Coverage and Yield

DPPM = defective parts per million
The Known-Good Die (KGD) Problem With Chiplets

Expensive challenge with increased die count

How are defective chiplets escaping?

Function of fab yield and test coverage

Bare die test limitations

Package yield @ **2000 DPPM** average chiplet escape rate

No. of chiplets per package

Package Yield Lower With Increased Number of Chiplets

DPPM = defective parts per million
Chiplet Escape Reduction Requires a New Approach

<table>
<thead>
<tr>
<th>Chiplet Escape Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% of lots, 100% of die on critical layers</td>
</tr>
<tr>
<td>Inline optical inspection screening for early identification of at-risk devices</td>
</tr>
<tr>
<td>Improved wafer sort (including µbump probing)</td>
</tr>
<tr>
<td>More sophisticated electrical test binning</td>
</tr>
</tbody>
</table>

Inline defect screening methods already reducing escapes for automotive chips

- I-PAT® (Inline Defect Parts Average Testing)
- High risk die identified and screened

Methods to Improve Quality and Reliability for Auto Chips Can Also Improve Chiplet Package Yield
Hybrid Bonding
Innovative Technology for Heterogeneous Integration
Hybrid Bonding: The Next Inflection in Heterogeneous Integration

- Key Benefits: Speed, Bandwidth and Power Efficiency through increased interconnect density
- Hybrid Bonding in Packaging with D2W integration key for AI Logic Chips and High Bandwidth Memory

Several Inspection, Metrology and Integration Challenges
Die to Wafer Hybrid Bonding Integration Schemes

Collective Hybrid Bonding
- Die to be bonded are prepared, diced, then placed on carrier wafer
- Activation, cleaning and then bonding
- Remove carrier wafer, leaving bonded die on target wafer
- Die transfer all at once
- Narrow die thickness range
- Proven die activation and cleaning methods
- Possible rework
- Challenges include thin die, cleanliness, alignment, carrier removal

Sequential Hybrid Bonding
- Singulated die are transferred to carrier for activation and cleaning
- Direct placement of die using a bonder tool
- Die transfer one by one provides flexibility
- No die thickness limitations
- Challenges include handling of multi-die stacks, die activation and cleaning, alignment, cleanliness
Hybrid Bonding Challenges

Surface Cleanliness Before Bonding
- Significantly cleaner surface required compared to thermal compression bonding (TCB)
- Particles/residues cause voiding

Surface Topography Before Bonding
- Cu/dielectric profile critical
- CMP process control
- Current AFM not capable in high volume manufacturing

Die Singulation Cleanliness and Final Profile
- Conventional die singulation (laser/saw) very dirty
- Bonding and stacking very sensitive to die profile

Low Temperature Processing
- Etch/deposition processes on the presence of soft adhesives
- High-quality but low temp (<125°C) processing capabilities needed
Collaborations: Key to Tackle the Challenges and Provide Solutions

Several Active Projects with Top Semiconductor iDMs, Foundries and OSATs
Surface Cleanliness Before Bonding

Wafer Inspection Requirements

- High sensitivity for 3DIC and FO
- Detect and resolve excursions
- Bonded, thinned, warped and diced wafers

Post-Bond Void Correlation to Defects

Source: imec, SEMICON Korea 2017
SAM = scanning acoustic microscopy
Surface Topography Before Bonding

Metrology Requirements

- Surface profile for hybrid bonding
- Si thickness for TSV process control
- Final revealed TSV height

Quantify Erosion, Cu Dishing and Roughness

Erosion and Cu dishing in Zeta cross section
Die Singulation Cleanliness and Final Profile

Dicing Requirements

- Increased die strength
- Defect free dicing
- Reduced dicing kerf width

Plasma Dicing
- 286 defects (1µm and above)
- Optical image shows smooth edge
- No voids

Blade Dicing
- 19,000 defects (1µm and above)
- Optical image shows rough edge
- Voids

Plasma Dicing Results in Smooth Profile and Low Defectivity

Source: collaboration with imec
Low Temperature Processing

Low Temp PECVD Requirements

- SiCN films at 175°C and 350°C
- Tunable carbon and stress
- Good thermal stability
- Void free

Low Temp SiCN Films are Void Free After Bond and Anneal

Source: collaboration with imec
Data Automation Solutions

Process Control

Klarity® Data Analysis System

From Defect... Analyze

Correlate

Identify

Unpatterned to Patterned Correlation Hotspot Discovery

Reticle Inspection

Lot History

Metrology to Defect

Yield Prediction

Killer Defect?

Problematic Chamber/Process?

Introduced in frontend in mid 90’s
Summary

An Exciting Time for Advanced Packaging
An Exciting Time for Advanced Packaging

- Packaging is driving performance differentiation
- Heterogeneous integration enables scaling
- Chiplets require Known Good Die; established methods from auto fabs can help
- Hybrid bonding technology is driving innovation for both process and process control
Thank You

Oreste Donzella
Executive Vice President, EPC Group
KLA Corporation

November 2021