

Semiconductor Components, Instruments and Subsystems (SCIS)

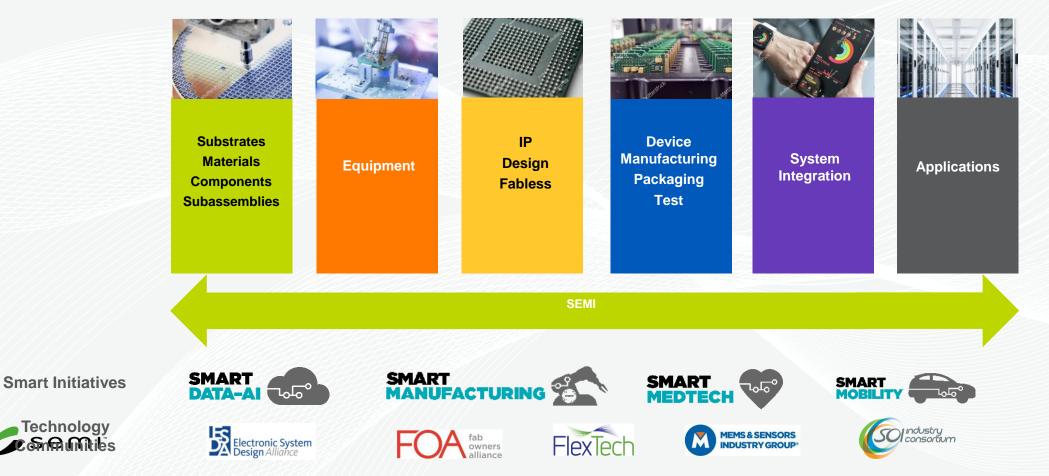
Technology Community

Overview | 2023

SEMI speeds the time-to-better business results for its members across the global electronics design and manufacturing supply chain.

Г - COLLABORATE - INNOVATE - GROW - PROSPER

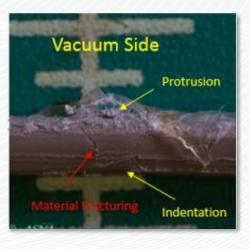
50+ Years Later: SEMI is More Than Ever and Growing!


semi

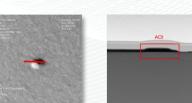
CONNECT - COLLABORATE - INNOVATE - GROW - PROSPER


SEMI Connects the Global Electronics Design and Manufacturing Supply Chain

Convergence and new disruptions are driving transformation to the digital era


ONE MEMBERSHIP OPENS THE DOOR TO A WORLD OF TECHNOLOGY COMMUNITIES

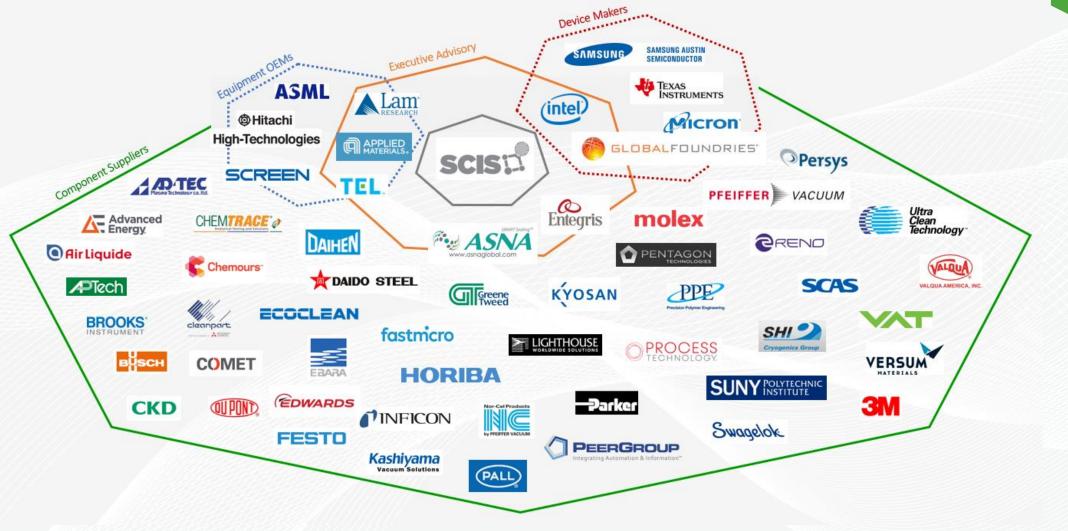
Supply Chain Issue

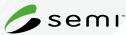

<u>Problem Statement</u>: Defects introduced by process-critical OEM components affect final wafer quality resulting in lower yields and higher manufacturing costs.

- Several yield excursions are linked to wide range of component and sub-components induced defectivity.
- Components and sub-components defect traceability lack the rigor for advanced technologies (detectability, sensitivity/methodology).
- Existing standards, if any, are inadequate for addressing advanced • process control requirements.

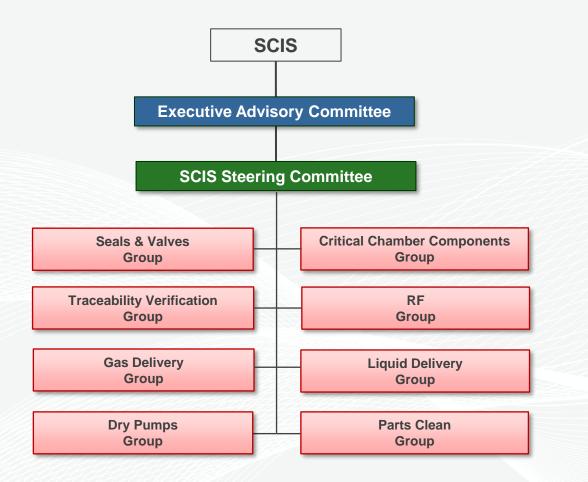
30-35 nm particles

SEMI SCIS Technology Community

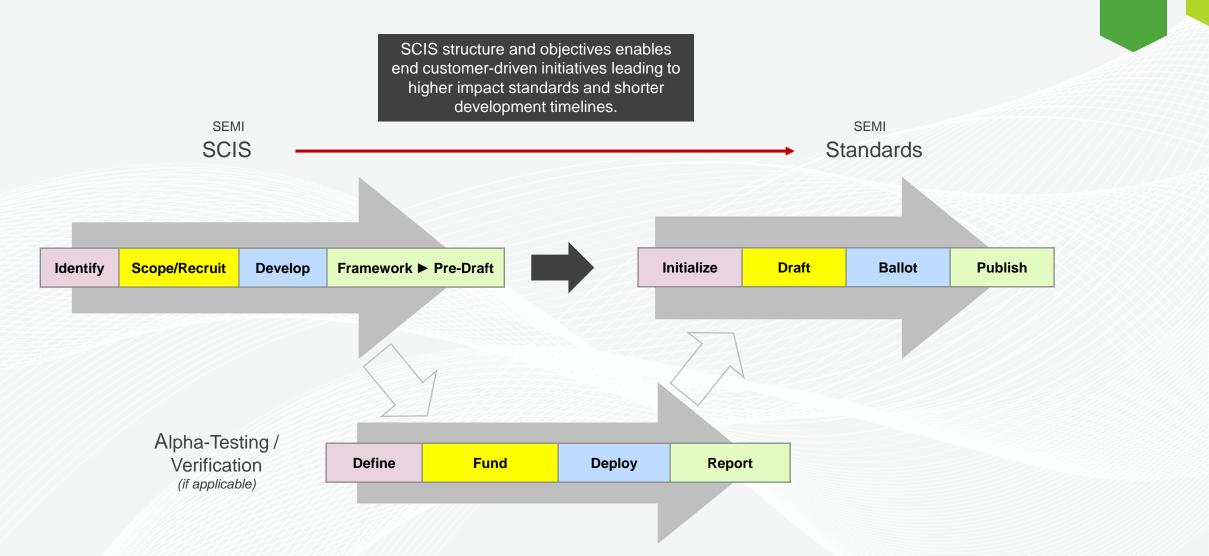

(Semiconductor Components, Instruments, and Subsystems)


- <u>Focus</u>: Establishing a baseline for measuring defects introduced by process-critical components.
 - Particle or defect limits will not be defined but will focus on defining consistent methodologies for measuring defects.

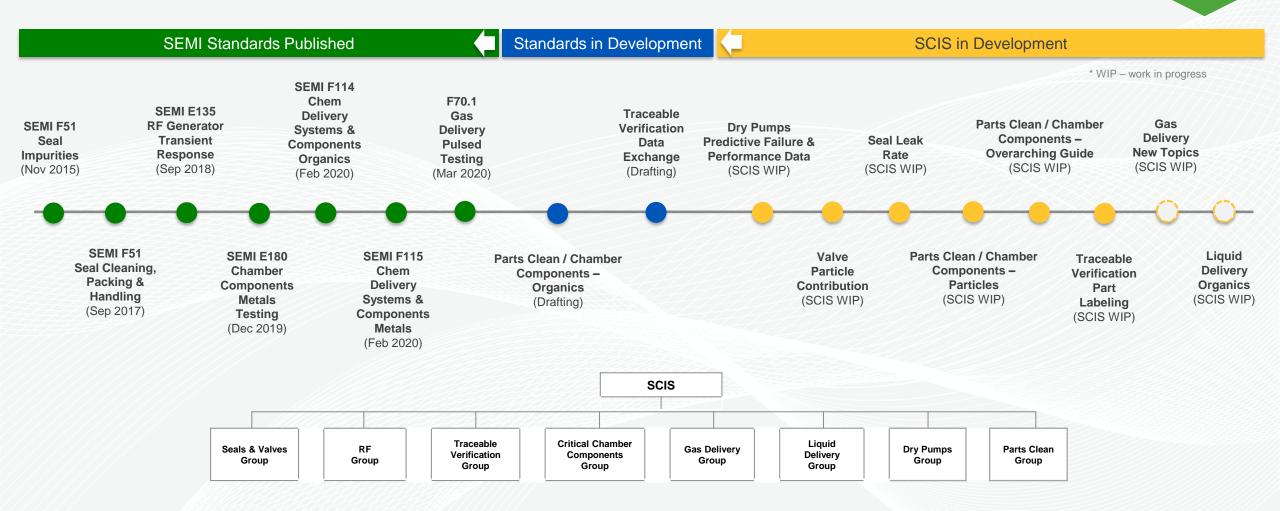
- SCIS provides a forum that fosters discussion and aligns stakeholders on pre-competitive industry-critical issues.
 - Participants are not expected to disclose IP but are expected to provide parameters for standardized measurement.



Participating Companies



SCIS Organizational Structure



SCIS to Standards – Process Flow

SCIS Standardization Initiatives – Status

Semiconductor Components, Instruments and Subsystems (SCIS)

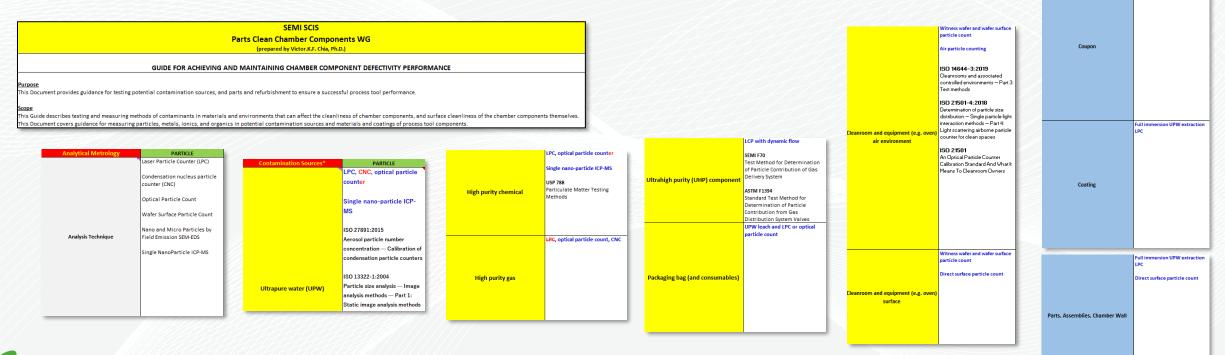
Technology Community

Joint Parts Clean and Critical Chamber Components (CCC) WGs

- Current Activities:
 - Organics
 - Particles
 - "Over-arching" document on parts cleaning

- The WG has been focusing on:
 - "Over-arching" document on parts cleaning [1/2]
 - WG lead: Victor Chia (Air Liquide/Balazs)
 - WG plans to develop over-arching document into a full consensus Standard as a Guide
 - The Guide will provide users information on available test methods. It will be up to the user to determine which technique will be used for their needs
 - The Guide can also be referenced by users/customers
 - Next Meeting: Wednesday, December 7 at 8 AM (Pacific)

				Parts C	SEMI SCIS lean Chamber Compone properdby Vider, K.F. Chia, Ph.D	nts WG					
			GLUDE FOR A CHEVING A	NO MAIN	TAINING CHAMBER COMPO		FREORMANCE				
Nurpow This Document of	rovides gal dance for test				met toenurea succeptul proes	stop performance					
las pe											
covers guidance f	be testing and measure br measuring particles, i								onents themselves. This Do cament		
Analys	kal Metrology	PA Laser Parti de Cr	ancis unter (IPC) Inductive),	NORGA Coupled Po	ec ma Mass Ton Ovornobroge	aphy (C) Gas Chr	ORGANIC onstography	Caulty Ring tor Moisture A	OTHER -Down Spectrosco py (CRDS) nalyzer		
Analysis Technique		Condensation m counter (CNC)			X-ray Photoelectr addion (VPQ) Spectroscopy (VP	on -Diate S) -Mass	oncourc omitography i lonization Detect age I onization de Spectrometer rail Description GC	tector (DE)			
		Optical Particle	Count Drop Scan		Atrimpinger or B		atle Residue (NV				
		Water Surbox P				Fourier	Transform Initiane Impy (FTR)	- I		1.1	
		Nano and Micro Field Driation S Single NanoPart	DA-D25 (XPS)	ataelectron Spectro supp ry Ion Mass Spectrometry							
		Single Associat			a noneny	Thermal (TDS)	Description Spect	roscopy			
			Later Abla		Emission		hromatography - I Detection (LCOC			1.1	
			Giow Dist Spectrome							177	
Conturn	hatlan Sauran e	PA LPC, CNC, op		NORGA			onGAMIC and/or GC-MI	INE Discolved S	OTHER I by Spectrophoto metry, SH as by adSI by IC P-OES, and Bacteria by method	1.	
		countier			EM/ES or KP. CE and/or CE ASTM 0760	MS LC-MS	and/orLC-MS	MS In subation	war vy s. POES, and Baderia by method	17-	
		150 27801-2012	As the Dealer Standard R	otian for Pro	Standard Colds	to be Standar	d Colds for Ideal	Reation			
		Aaronal particle concentration -		Press of S	Anion e in Grab S La Merca. Ultrapare Water	c Analysis of and Qua amples of Compo- (UPW) in the Gas Ov industry Impact	ands in Water by omatography are	Combined Electron		11	
		condensation p	article counters		Seniconductor	nducity Impact	Maxa Spectrome			1.	
Ultra pu	re water (UPW)	Particle dae	en de la composition de la com		LCP with dynamic flow	UPW/acid leach and		UPW leads and IC	Solvent extraction and GCW	5 Moles	ture dry down texting using CRDS ture an alyzer
		Image analys			si NERRO Text Method for Determination of Particle Contaliation of Rais Delivery System	XPS br Cr/Fe and Cr	Ov/FeOx Ratios	CONTRONSION CONTROL CONTROL AND CONTROL Standard Stude for con- Charactergraphic Analysis Analos in Scala Samples of Ultraparentiates (JPW) in Semiconductor Industry			
			Ultrahigh purity (UHP) con	ng ane nt		Test Method for 636A 6 Switce Composition of	when a could be tred surfaces of	Charactergraphic Analysis Anicole in field Samples of URX anice Water (APW) in	at Be	Down I Conver	ethod for Determination of ht is dure De- Charactes di ci of Sarfaor-Mounted and in oral das Debues Systems by Casty Rog. 5 percenceps (OKD)
					standard lest method for betermention of Particle Contribution from Na Contribution by term Values	Components		terreconductor industry			the month's formed
					UPW1each and IPC or optical particle count	UPW/acid leach and	ICP-MS	UPW leads and IC	UPW leach and total org carbon	anic Secon	idary contern
									Solvent extraction and C	C-MS	
		UPC, op tikel p Single nano-s	Packaging bag (and consumables)						Thermal Description-OC	MS	
	urity chemical	LSP 38							Vacuum environment ou GC-MS	lg as	
regh p	w sy contracat	P 4TKABEP NOE							Hand Space GC-MS		
					Witness wafer and wafer surface particle count		d VPD ICP MS (DSE) ICP-	Witness wafer and extraction and IC	UPW Witness wafer and TD G		idary conorm
		LECC, o prikali p			Air parti die counting	MS		Ar	Calues Solid Tube adsor parents and TD OC-MS	ption	
sage	h purity gas				NO11664-8209 Characteris and associated convolution environments — Part & Jest methods	Air in pinger/bubl MS		impinger/bubbler/S phase adsorber and Air	IC SEMI MP1982	inganiki	
					NOJ190142038	SEMI 545 Test Method for the		for the second state of the second	citid Contaminan & on Silicon Wi CE Sarfaces by Thermal Desor Ges. Oversatography	fer stion	
					Determination of particle size dest lation — Single particle light interaction methods — Part 4, right scattering a Bonne particle counter for dean reasons	of Inorganic Contan Minierwiren ments U	ination from ising VPD-TX RF,	impinger/taitoter/s phase adsorber and	Ges Overstegraphy AST M D3685-20		
		1	Clean room an diequipment ; air en vironment	e.g. overi)		150 30011:2010			Atmospheres to Collect Org	Ing	
		Jan Jan			602368 An Optical Particle Covenier Galdication standard Andrehot E Mineric To Cleandors Oveney	Workplaan air - Determination of metals and metalloids in airborne particulate matter by inductively			Compound Vapors (Activate Charcoal Tube Adeep for I	d Arthod)	
	To al Car	panint	PARTICLE		NORGANIC	particulars matter o	y inductively	ORGANIC	OTHER		
			uc		lepth Immenion add extradion I ICP-MS allaed ISE and ICP-MS	Full Immendian UPW extraction and IC XPS	Fullin and G		we wandery condem		
				200		80 C	x85				
				Bull SIV	k analysis by LA KP-MS, GD-OES, S		New Terrare	dending y for MK-1810-1818 Indiges of tenedly take	n has		reanairm
	Coup	an									
				Det la co	M Volan eldi, kozeń eloprest a ndó sekotor d'a standaró hol for the Quanto toe monation d'élements in Roató kos gés la LA-CP-MS						
				061	M Volumetic Rough						
				100	convey and Amopal Corpored	full lange			ion Coating thicks as (150 2120:2	10	
			ux.		iyoz Ilmanalysis by IA ICPANS, GD- I, SIMS, XPS A-IDS		Fullim and GD RGA at		color, admittanos, breakdowr 2376/2972), corrosilon reisk tar	vo ltage (50 co,610 bubble	
					A-EDS N/acid leach and ICP-MS	XPS	XP5		weight text	LO12018),	
	Coat	ne			alland DSE and ICP-MS		103 p	dendagy for MM-310-0081 inf, heatype of small volum	e fact		
				2.42	N STP25408 Is Phatoele dran Spectorcopy and onders too Marci Spectronetry. A toe despoet ppraech to Surface Is n						
				564 244	nervengelt Approxitis to a set ace ly sk						
					In strands Increase of APS Analysis to Revearch the Causes of Carronan calized DSE and ICP- MS	Lopiand UPW extrac					
			UC		taiLad DSE and ICP-MS	IC .	rio.	er er en	www.uwkandwy.conom		
			Ohed safee petidecoat		M F180	Critical wipes and IC	R GA ar	MITOS			
	Parts, Asserbles	Ohamber Wall		Te Su	a Mathod for Measuring riace Metal Contamination						
			enber Wall		raugh ICP-MS of Critical amber Components Used in miconductor Wafer						
				Ch.	amber Components Used in						


- The WG has been focusing on:
 - Particles [1/3]
 - WG Leads: Tommaso Orzali (ASML), Fuhe Li (Balazs), Erik Vermeulen (Fastmicro)
 - 3 parallel activities:
 - Guide Document + Test Method (Tape Lift-off) + Test Method (OPC/LPC)

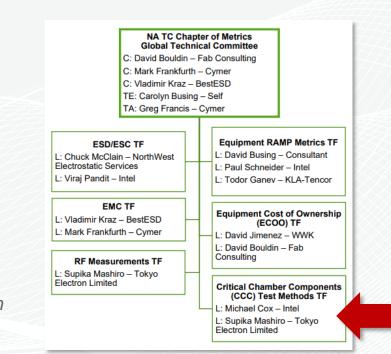
- The WG has been focusing on:
 - Particles [2/3]

Guide Document

Guide Document would be incorporated into the Over-arching Document effort

- The WG has been focusing on:
 - Particles [3/3]

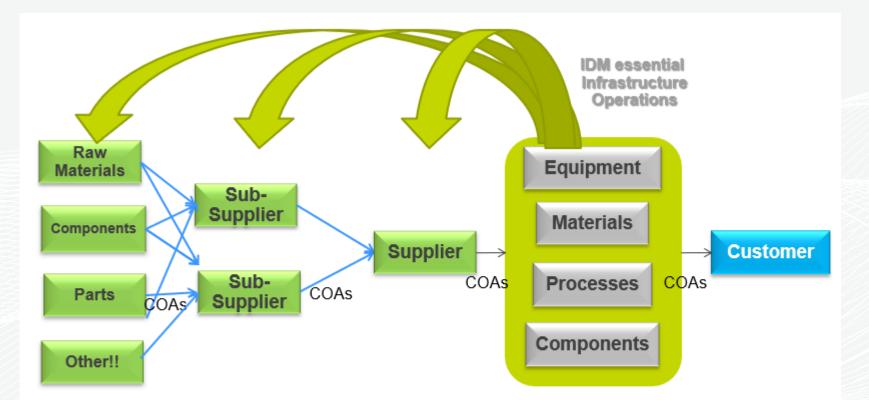
Test Method for Tape Lift-off


- Describes a quantitative analysis method for measuring ISO 14644-9 Surface Cleanliness by Particle concentration (SCP) of critical chamber components by using a replacement adhesive substrate to remove particles from the surface of interest and to measure them with a scatterometer or scanning surface inspection system (for particle counting) and then further analysis (via SEM/EDX) to identify elemental composition of particles
- WG will continue to align on key elements/framework under this SCIS WG
- This activity will eventually be moved to SEMI Standards for formal standards development

Test Method for OPC/LPC/Flushing

- Drafting, to be discussed at next meeting
- <u>Next meeting</u>: Wednesday, December 7 at 8 AM (Pacific)

- The WG has been focusing on:
 - Organics
 - In progress draft circulated among WG members for inputs
 - Approach to structure is similar to SEMI E180, focusing on critical chamber components (CCC)
 - This activity has been transitioned to SEMI Standards for formal development
 - (SNARF # 6931) New Standard: Test Method for Measuring Organics Contamination through Thermal Desorption or Solvent Extraction Gas Chromatography Mass Spectrometry of Critical Chamber Components Used in Semiconductor Wafer Processing and Inspection


Semiconductor Components, Instruments and Subsystems (SCIS)

Technology Community

Traceable Verification

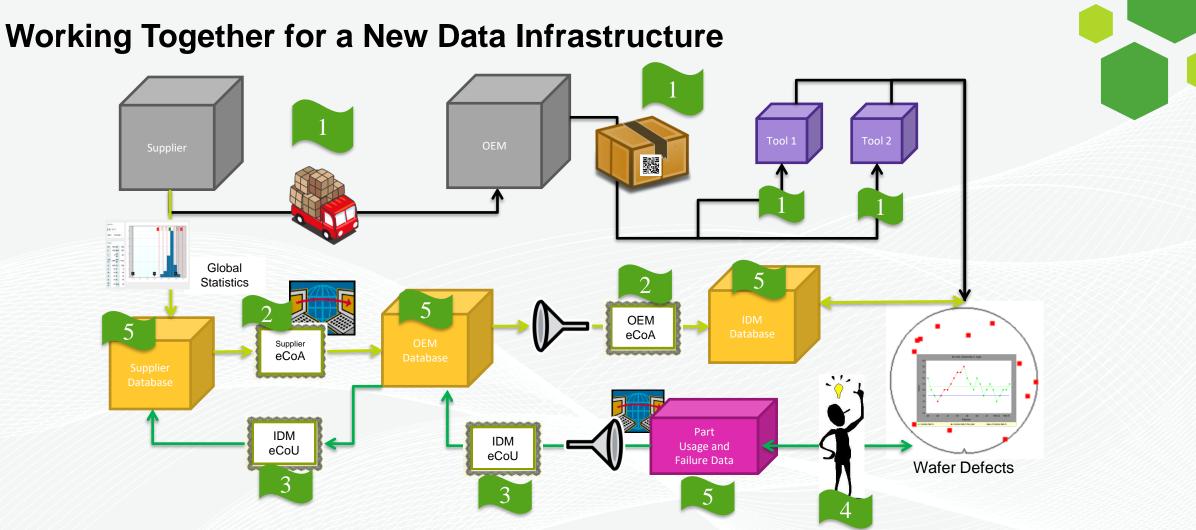


Traceable Verification - Requires Data Integration

Collaboration, Traceability & Standards are key Ingredient to ensure alignment

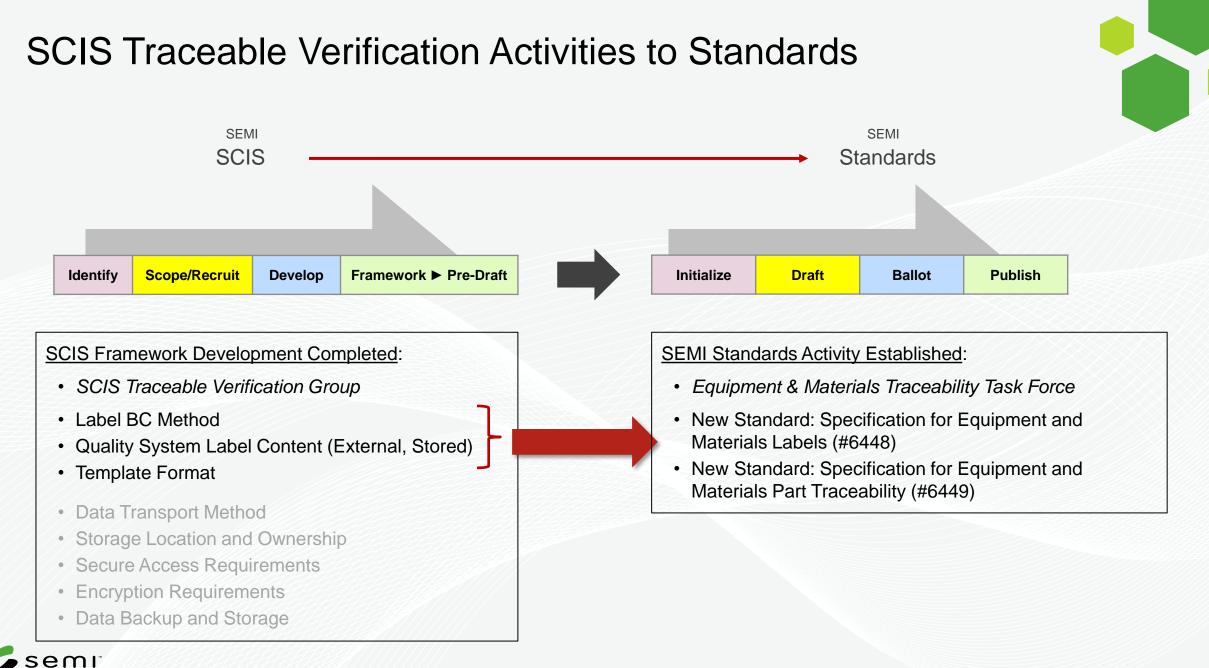
In Line process monitoring controls and traceability at every stage goes far beyond the outgoing COAs of supply chain

Requirements

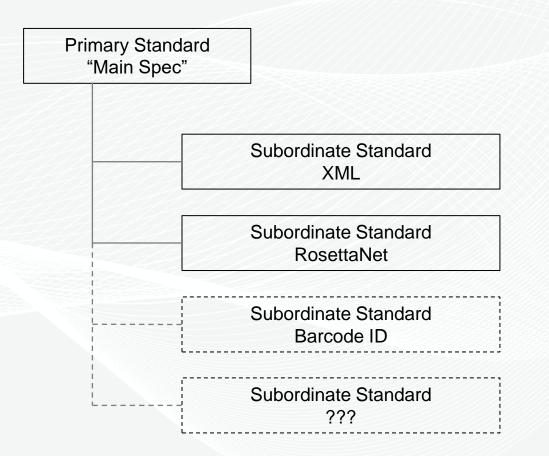


- Standardized Identification (SNARF# 6448)
- Easy ID e.g. 2D Bar code will link to UUID for data reference
- Standardized Data Format (SNARF# 6449)
 - Standardized scalable Information Exchange templates by commodity
 - ECOC/ECOA templates
- 3
- Data Push method extensions to Standardized Data Format
- Deliver information prior to receipt and point of use
- COU Certificate of Use back to supplier (Failure modes, lifetime and CIP, etc.)
- 4

Data Pull method


- Supplier / Source Web Site
- 5 History Tracking System (Use and Failure)
 - External (supplier)
 - Internal (customer)

- Sharing manufacturing data on parts and materials is critical for improvement and excursion containment
- Fabs must use data to find and share learnings with suppliers and IDMs
- Easy look up of "missing" data

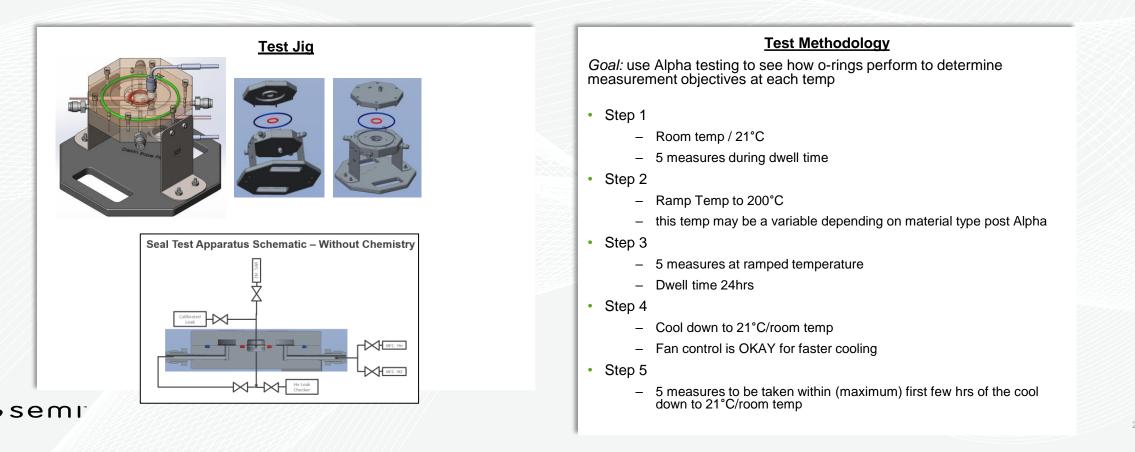

Equipment & Materials Traceability Task Force Activities & Status [1/2]

- New Standard: Specification for Equipment and Materials Labels (SEMI Draft Document # 6448)
 - Ballot was developed using VDA 4992 MAT Label and eMat data exchange at the Material Label format.
 - SEMI has held separate meetings with OEM and IDM representatives to discuss concerns as well as efforts to realize material traceability.
 - Status:
 - Current 6448 SNARF will be abolished
 - This will take place at the North America Chapter of the Traceability Technical Committee meeting on November 10
 - The TF plans to start a new activity based on an alternative standardization approach
 - Discussions on the new standardization approach will be taken back to SCIS Traceable Verification WG for re-engineering (this removes 6448 from the balloting process for now)
 - Next SCIS Traceable Verification WG meeting to be announced
 - The TF also plans to continue its other existing activity in parallel (6449 eCOA)
 - A strawman document will be circulated once drafting is complete
 - OEM stakeholders are requested to engage at the document development level

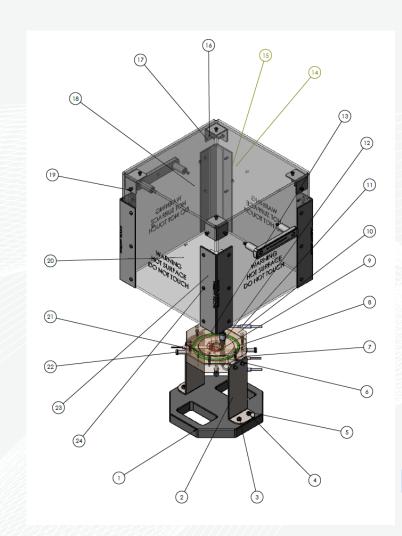
Equipment & Materials Traceability Task Force Activities & Status [2/2]

- New Standard: Specification for Equipment and Materials Part Traceability (SEMI Draft Document# 6449)
 - Purpose: Specification for communicating part quality
 - Standardized scalable electronic Information Exchange templates by commodity eCOC/ECOA Templates
 - Status: Drafting in progress
 - Looking for samples of suppliers' eCOA to ensure all information is captured in the new Standard
 - Ballot contributors always welcome!

Semiconductor Components, Instruments and Subsystems (SCIS)


Technology Community

Seals WG


SCIS Seals Group Leak Rate Project [1/4]

- Focus: Seal Leak Rate
 - <u>Rationale</u>: Seal failure can generate defects through atmospheric leaks into process environments or from degraded seal material. There is a need to develop a standardized way for measuring a seal's ability to hold vacuum when exposed to elevated temperatures and/or process and clean chemistries.

SCIS Seals Group Leak Rate Project [2/4]

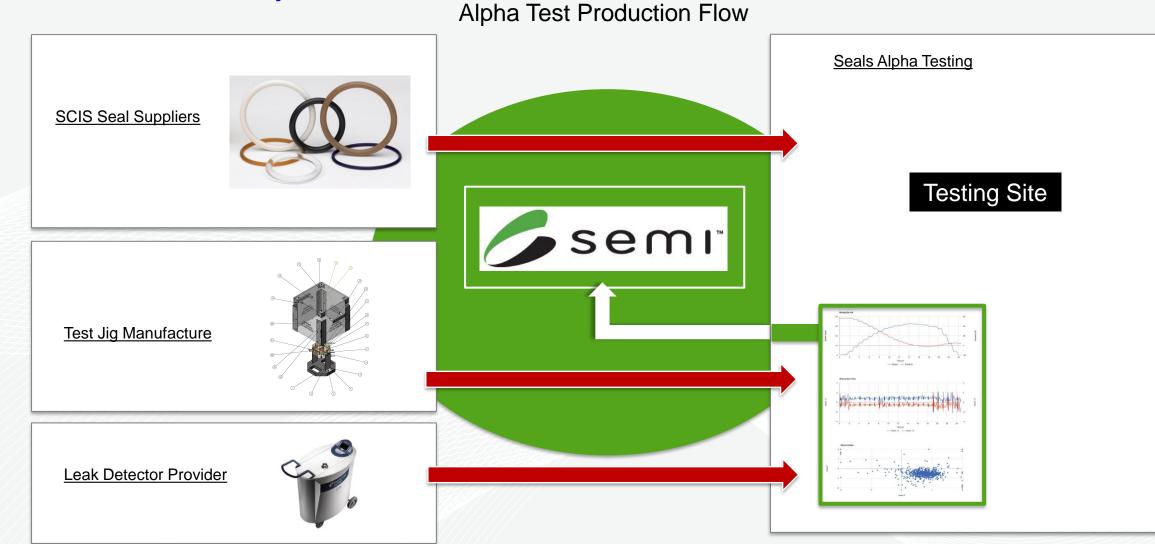
• BOM

		REVISIONS											
			ZONE	REV.			DESCRIPTION				DATE	APP	ROVED
				01			BOM RELE	ASE			11/20/2018		PL
				02		a	MIT TUBE PR	RESSFIT			11/29/2018		PL
				03	CHAN	NGE TO 2 PL	ED FROM A	ES, ITEM #	18 AND 1 O ALUM	20 NUM	1/7/2019		PL
				04		ADD	D ITEM #23	AND #24			1/23/2019		PL
	ITEM NO.	PAR	T NUMBER			DESCRIPTION						QT	Y.
	1	Weight Pl	Weight Plate				Machine Part: Aluminum						
	2	L Bracket	Hold	er		Sh	neet N	letal:	Stain	less :	Steel	2	
	3	McMaster #: 92196A197			197	18-8 Screv	Stainle v, 8-32	ess St ? Thre	eel So ad Siz	ocke ze, 3,	t Head /4" Long	14	1
	4	McMaster	r #: 9	2141A	009 1	18-8 Stainless Steel Washer for Number 8 Screw Size, 0.172" ID, 0.375" OD					ner for ' ID, 0.375"	8	
	5	McMaster	r #: 9	1841 A	009	18-8			eel Ho ad Size		ut, 8-32	4	
	6	McMaster	r #: 9	2146A		18-8 Stainless Steel Split Lock Washer for Number 8 Screw Size, 0.174" ID, 0.293" OD						8	
	7	Bottom Plate				Machine Part: 316 Stainless Steel						1	
	8		-242 Oring						00AP			1	
	9	-214 Oring	3						UT			1	
	10	Top Plate				Machine Part: 316 Stainless Steel						1	
	11	TC with Bayonet Fitting			ng	BT-090-K-2 1/4-60-2					2		
	12	Adapter E .4380D x	Adapter Bayonet .4380D x .2811D			BTA-2					2		
	13	McMaster	7395A	441	Dowel Pin, 316 Stainless Steel, 1/8" Diameter, 1/2" Long					3			
	14	McMaster	McMaster #: 10995A19 McMaster #: 92196A801			High-Temperature Plastic Pull Handle with Unthreaded Through Holes, 4- 1/4" Wide Center-to-Center					2		
	15	McMaster				18-8 Stainless Steel Socket Head Screw, 1/4"-20 Thread Size, 2" Long, Fully Threaded						4	
	16	PEM CLS-8	332-0	N		Pressf	it Haro	dware Bra	e onto cket	o Stre	engthen	12	2
	17	Strengthe	n Bracket			Sh	neet M	letal:	Stain	less S	iteel	4	
	18	Viewing T	op Pl	ate		Machine Part: 6061 Aluminum					1		
	19		r #: 93085A199			Mil. Spec. Stainless Steel Phillips Flat Head Screws, 100 Degree Countersink Angle, 8-32 Thread, 1" Long					ree	13	2
	20	Viewing S	ide P	late		Machine Part: 6061 Aluminum					4		
	21	WATLOW .250OD 2.	E2J80 120V			WATLOW E2J80					2		
	22	22 SS-4-VCR- VCR-3-4TB		R-4-1 and 6LV-4- TB2			Swagelok Part #: 6LV-4-VCR-3-4TB2					4	
	23 1460N24 Hard Sili		60N24 (60A) Medium ard Silicon			Silicon - Manual Cut				2			
	24	McMaster	McMaster#:91772A194			Passivated 18-8 Stainless Steel Pan Head Phillips Screw, 8-32 Thread, 1/2" Long					24	4	
					OTHERWISE S		a was	NAME		APPL	IED SEALS NO	RTH AMER	ICA, IN
ASN	A				DIS ARE IN IN ICES: NAL± R: MACH± CE DECIMAL ACE DECIMAL		IECKED IG APPR. IG APPR.	PL	112018	TITLE:		For JI	
ROPRETARY AND CONFIDENTIAL SCRIMATION CONTAINED IN THE				TOLERAND	GEOMETRIC ING PER		A. OWMENTS:				DW0		
ED SEALS NORTH	DOWNOUNDED IN THIS DISCONTRY OF NAMERICA, INC. IN PART OR AS A WRITEN ED SEALS NORTH HIBITED.	NECT ASSY US	ID ON	RICH			*•• A	1 6Å	IA	C	DWG. NO.		

CAD Courtesy of

SCIS Seals Group Leak Rate Project [3/4]

- Operating Procedures
 - Provides detailed, step-by-step procedures for conducting seal leak rate alpha test
- Alignment needed on key requirements
 - O-ring prep prior to testing
 - Room temperature range
 - # of leak rate measurements taken
 - Ramp temperature, gradient
 - Dwell time
 - Conditioning


Operating Procedures – Contents:

- 1) Safety
- 2) Background Information
- 3) O-Ring Test Jig Facilities & Hardware Requirements
- 4) Configuring the O-Ring Test Jig for Operation
- 5) Calibrating the O-Ring Test Jig for Operation
- 6) Preparing an O-Ring for Leak-Rate Test on the Jig
- 7) Running an O-Ring Leak-Rate Test on the Jig
- 8) Recording an O-Ring Leak-Rate Test Result
- 9) Calculating Gauge Repeatability & Reliability
- 10) Alpha Testing Sampling Requirements

SCIS Seals Group Leak Rate Project [4/4]

SCIS Seals Group Project Contributions - Update

Item / Resource	Contributor	Status
Testing Site	TELUS	Confirmed
Leak Detector	Edwards	Confirmed
Valves	CKD USA	Confirmed
Fittings	Swagelok	Confirmed
PLC	Festo	Confirmed
Test Fixture - Assembly	TEL US	Confirmed
Test Fixture - Materials	TEL US	Fixture (machined) parts done – early Nov 2022
Firestop Material / Thermal Insulation	???	Discussion in progress Ongoing discussion re: material details

Many thanks to our contributors!!

Semiconductor Components, Instruments and Subsystems (SCIS)

Technology Community

Dry Pumps

Dry Pumps

- Background:
 - Critical pump data can be utilized for predictive pump failure detection. Some of this data can be obtained today while others are not yet widely available.
 - Parameters evaluated include:

 - Temperature
 - Speed

semi

- Inlet PressureVibration NoiseExhaust PressurePump Run Hours

 - Power, Current
 - N2 Purge
- Reviewed existing standards
 - ISO (vibration on rotational equipment)
 - SEMI (data communication, specific device model)
 - SEMI E73, Specification for Vacuum Pump Interfaces Dry Pumps
 - SEMI E54.18, Specification for Sensor/Actuator Network Specific Device Model for Vacuum Pump Device

Pump Data Survey (excerpt)

Parameter	(a) Is this data available today?									
	Input #1	Input #2	Input #3	Input #4	Input #5	Input #6	Input #7	Cumulative		
Inlet Pressure	N	Y (as fab)	N	N	N	N	Y	~N		
Vibration	N	N	N	N	N	N	Y	N		
Noise	N	N	N	N	N	N	Y	~N		
Temperature				Y						
 Cooling Water Flow, Temperature 	Y	Y	Y & N	N	Y	Y	Y	~Y		
 Lack of Cooling Water 	Y	Y	Y	N	Y	N	Y	~Y		
Speed	Y/N	Y	Y	Y	Y	Y	Y	~Y		
Exhaust Pressure	Y	Y	Y	Y	Y	Y	Y	~Y		
Pump Run Hours	Y/N	Y	Y	Y	Y	Y	Y	~Y		
Power, Current	Y	Y	Y	Y	Y	Y	Y	Y		
N2 Purge*	Y	Y	Y	Y	Y	Y	Y	Y		

Dry Pumps

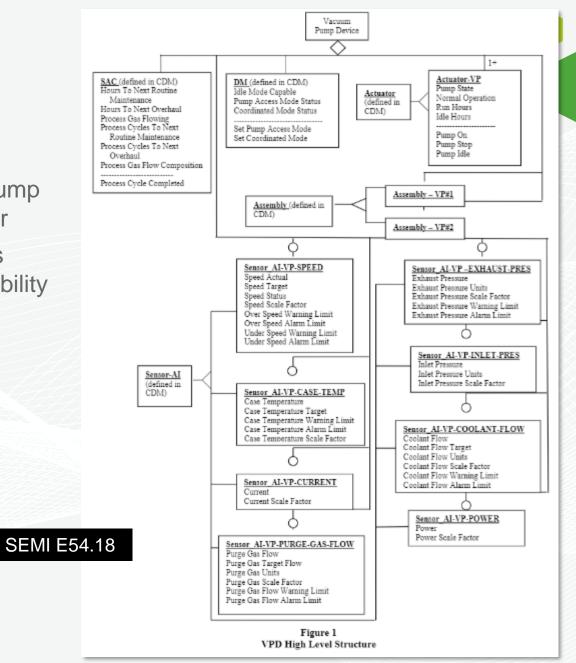
- Status: Drafting completed on guide for measuring vibration
- Guide for Measuring Vibration of Dry Pumps
 - There are many pump parameters that can be used to determine its health → Vibration is just one of these parameters
 - Draft provides guidance on how vibration measurements are taken for dry pumps
 - Draft also provides guidelines for evaluating pumps for use at customer sites
 - Elements considered include:
 - Sensor Considerations
 - Type
 - Location
 - # of Sensors

- Data Collection
 - Interface

Sampling Rate

• Frequency

- Communication
- This guide does not address how the data is processed to determine the health of the pump


Inputs Received

- WG Discussion
 - Input received calls for 2 parts (signal, alarm)
 - Most customers want the signal and they do their own processing
 - WG to take a closer look at SEMI E54.18 and SEMI E54.1 standards
 - SEMI E54.18 Specification for Sensor/Actuator Network Specific Device Model for Vacuum Pump Device
 - SEMI E54.1 Standard for Sensor/Actuator Network Common Device Model
 - Revision to incorporate vibration signal
 - Current vibration draft:
 - Refers to E54.18 (or other accepted methods) for communicating vibration signal
 - Acknowledges data processing, but does not address it (outside of scope, IP sensitivity)

Dry Pumps - Status

- Next Steps
 - WG soliciting inputs on whether to take on pump communication or move on to next parameter
 - If on pump communication, should the efforts focus on new tools vs on backwards compatibility for old tools?

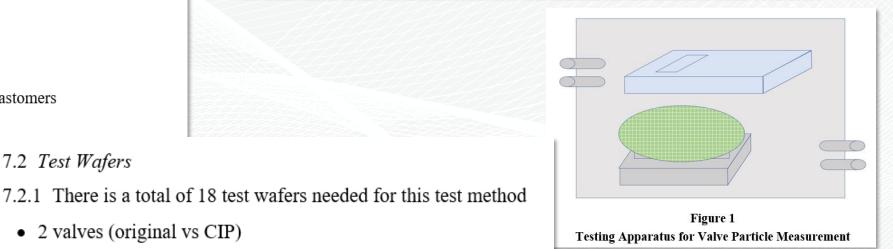
Semiconductor Components, Instruments and Subsystems (SCIS)

Technology Community

Valves WG

SCIS Valves Activity

- Particle Contribution from Slit Valves (Wafer Transfer Valves)
 - <u>Rationale</u>: There is interest in minimizing particles generated by either elastomer or valve assembly
 - Traditionally, at qualification the particle contribution of valves & original elastomer are considered
 - Usually, the next step is the introduction of CIP elastomer
 - If CIP elastomer proves superior (i.e., less particle shed) than original elastomer, then focus can shift to optimizing valve operation parameters (if performance improvement of elastomer is deemed insufficient)
 - And/or if CIP elastomer still fails to meet performance criteria, then focus shifts to changing valve design, valve operation



- Particle Contribution from Slit Valves (Wafer Transfer Valves)
 - Status: Drafting in Progress
 - 9.1.2.2 Material properties to be provided by elastomer supplier
 - Hardness
 - Tensile modulus and strength
 - Elongation
 - · Coefficient of thermal expansion
 - · Compression set
 - Operating temperature range
 - Tr10 or Tg for low temperature elastomers
 - Plasma resistance (wt.% loss)
 - Filler material
 - · He permeation
 - Outgassing

semi

12.2 Baseline Measurements from Released Valve & Elastomer

- 12.2.1 The valve is tested against three different cycle conditions:
- ~2000 cycles to immediately assess CIP elastomer performance
- ~25,000 cycles to account for non-linear behavior of seal under test
- ~50,000 cycles for a lifetime evaluation test

- 3 tests (quick test vs lifetime vs intermediate)
- 3 measurements for each set up

2 valves (original vs CIP)

7.2 Test Wafers

40

- Particle Contribution from Slit Valves (Wafer Transfer Valves)
 - <u>Status</u>: Drafting in Progress

7.2 Test Wafers

- 7.2.1 There is a total of 18 test wafers needed for this test method
 - 2 valves (original vs CIP)
 - 3 tests (quick test vs lifetime vs intermediate)
 - 3 measurements for each set up
- 7.3 Measurement Equipment
- 7.3.1 Wafer Inspection Tool with SP5 Capability

Current draft calls for wafer inspection tool with SP5 capability.

There are concerns regarding accessibility of such equipment.

Are there other alternative measurement approaches that still meet current (and emerging) process needs?

- Previous outreach efforts to other valve manufacturers (SMC, V-Tex, GNB Group), unfortunately, did not lead to new participation
- Valves WG is in search for stakeholders willing to drive working particles draft to completion
- In the mean time, the WG continues to solicit feedback on the working draft

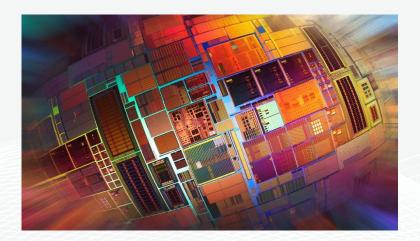
New SCIS Activity Proposed for 2023

- Subfab Data Integration
 - It would help Fabs to address a scaling challenge when seeking to contextualize the data. The general intent would be to address known missing FMEA signals (for vacuum health and other key parameters). Therefore, there is a desire for either a new standard or clearer guidelines.
- Suggested Next Steps
 - Sub-fab is a broad topic, encompasses multiple components. There are also environmental/regulatory considerations
 - Before forming any dedicated WGs (e.g., on abatement, on chillers), an SCIS community-wide survey will be issued to specifically identify key subfab areas of concern, pain points, etc.
 - Survey would be issued YE2022 or early 2023

SCIS Meeting Calendar 2023 (Proposed)

SCIS F2F Meetings

April 3 10:00 AM to 2:00 PM, Pacific


July 12 @ SEMICON West 2023 12:00 Noon to 2:00 PM, Pacific

Late-Oct, early-Nov 2023 10:00 AM to 2:00 PM, Pacific

- SEMI Industry Strategy Symposium (ISS) (January 8-11) in Half Moon Bay, CA
- NA Standards Spring 2023 Meetings (April 3-6) in Milpitas, CA
- SEMI Advanced Semiconductor Manufacturing Conference (ASMC) (May 1-4) in Saratoga Springs, NY
- SEMICON West 2023 (July 11-13) in San Francisco, CA

Contact Information

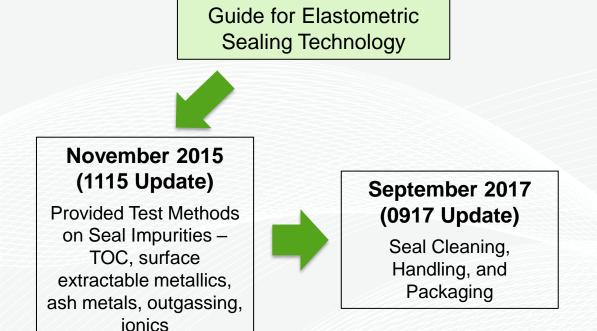
Paul Trio

Director, Standards, SEMI 673 S. Milpitas Boulevard Milpitas, CA 95035 Phone: 1.408.943.7041 Email: ptrio@semi.org

Mayura Padmanabhan

Technical Project Manager, SEMI 673 S. Milpitas Boulevard Milpitas, CA 95035 Phone: 1.979.739.0690 Email: mpadmanabhan@semi.org

Published SCIS Standards


SEMI F51

SEMI E135

Test Method for RF Generators to Determine Transient Response for RF Power Delivery Systems Used in Semiconductor Processing Equipment

September 2018 (0918 Update)

- Define nominal load, high impedance load and low impedance load
- Add new Related Information section covering:
 - Rationale for the limited number of required test loads
 - Expected control system gain variation as a function of load impedance on a linear load
 - Nonlinear (plasma) loads

Published SCIS Standards

SEMI E180

Test Method for Measuring Surface Metal Contamination Through ICP-MS of Critical Chamber Components Used in Semiconductor Wafer Processing

New Standard

 Provides a method for a quantitative analysis for surface trace-metal concentration of critical chamber components (CCCs) by using inductively coupled plasma-mass spectrometry (ICP-MS)

Published SCIS Standards

SEMI F70.1 - Test Method for Determination of Particle Contribution of Gas Delivery System

- Provides a standardized methodology and procedure for measuring the particle contribution performance of a gas delivery system in terms of number of particles added to gas flowing through the system.
- Applies to surface mount and conventional gas delivery systems used in semiconductor manufacturing equipment.

SEMI F114 - Test Method for the Determination of Organic Contaminants Present on Wetted Surfaces of Ultra High Purity Chemical Delivery Systems and Components

- Defines a test method for determining organic compounds on the wetted surfaces of ultra high purity (UHP) chemical delivery systems and components.
- Examples of test samples include valves, regulators, filters, and mass flow controllers, tubing, weld fittings, and face seal fittings.

SEMI F115 - Test Method for the Determination of Metallic Elements Present on Wetted Surfaces of Ultra High Purity Chemical Delivery Systems and Components

 Defines a test method for determining metallic elements present on the wetted surfaces of ultra high purity (UHP) chemical delivery systems and components.

- Seal Leak Rate
 - <u>Rationale</u>: Seal failure can generate defects through atmospheric leaks into process environments or from degraded seal material. There
 is a need to develop a standardized way for measuring a seal's ability to hold vacuum when exposed to elevated temperatures and/or
 process and clean chemistries.

• Particle Contribution from Slit Valves (Wafer Transfer Valves)

- <u>Rationale</u>: There is interest in minimizing particles generated by either elastomer or valve assembly
 - Traditionally, at qualification the particle contribution of valves & original elastomer are considered
 - · Usually, the next step is the introduction of CIP elastomer
 - If CIP elastomer proves superior (i.e., less particle shed) than original elastomer, then focus can shift to optimizing valve operation parameters (if performance improvement of elastomer is deemed insufficient)
 - And/or if CIP elastomer still fails to meet performance criteria, then focus shifts to changing valve design, valve operation
- Pump Data for Predictive Pump Failure Detection
 - <u>Rationale</u>: Critical pump data can be utilized for predictive pump failure detection. Some of this data can be obtained today while others are not yet widely available.
- Organic Contamination from Critical Components in Relevant Solvents
 - <u>Rationale</u>: Evidence from end-users has linked organic contamination to wafer quality. To date, no standards exist for determining relative organic levels from critical components most preferably on a bulk and specific basis.
- **RF Generator Reliability** SCIS is revisiting topic and plans to identify key contributing issues

Parts Cleaning

- <u>Rationale</u>: Defectivity can be introduced by various sources during parts cleaning process. There is a need for guidance on available test methodologies and other considerations that impact part cleanliness.
 - Activities on organics, particles as well as development of an over-arching guide for achieving and maintaining chamber component defectivity performance

Dry Pumps Survey Results [1/2]

• Compiled (a)

Parameter	(a) Is this data available today?								
	Input #1	Input #2	Input #3	Input #4	Input #5	Input #6	Input #7	Cumulative	
Inlet Pressure	N	Y (as fab)	Ν	N	Ν	N	Y	~N	
Vibration	N	N	Ν	N	Ν	N	Y	N	
Noise	N	N	Ν	N	N	N	Y	~N	
Temperature				Y					
 Cooling Water Flow, Temperature 	Y	Y	Y & N	N	Y	Y	Y	~Y	
 Lack of Cooling Water 	Y	Y	Y	N	Y	N	Y	~Y	
Speed	Y/N	Y	Y	Y	Y	Y	Y	~Y	
Exhaust Pressure	Y	Y	Y	Y	Y	Y	Y	~Y	
Pump Run Hours	Y/N	Y	Y	Y	Y	Y	Y	~Y	
Power, Current	Y	Y	Y	Y	Y	Y	Y	Y	
N2 Purge*	Y	Y	Y	Y	Y	Y	Y	Y	

Dry Pumps Survey Results [2/2]

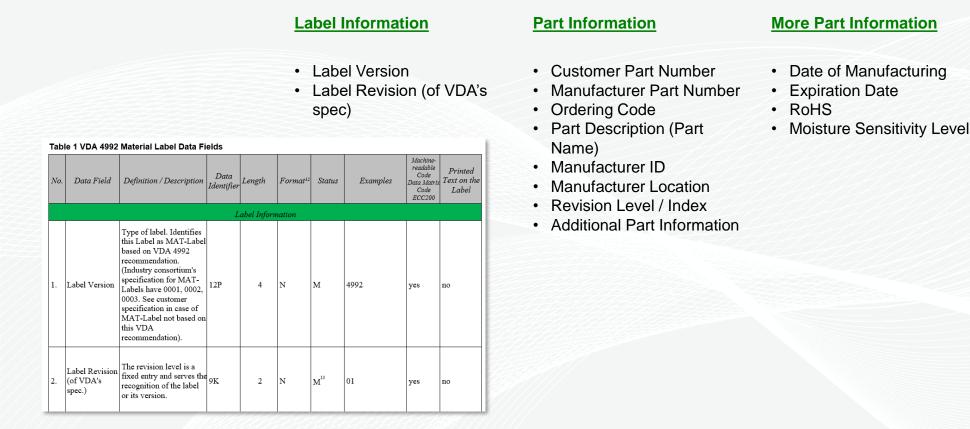
• Compiled (b)

Parameter	(b) Is this data useful?							
	Input #1	Input #2	Input #3	Input #4	Input #5	Input #6	Input #7	Cumulative
Inlet Pressure	Y	Y	N/Maybe	Y	Y	Y	Y	~Y
Vibration	Y	Y/N	N/Maybe	nice to have	Y	Y	Y	~Y
Noise	N	Y	N/Maybe	nice to have	Y	Y	Y	~Y
Temperature				Y				
 Cooling Water Flow, Temperature 	Y	Y	Y	Y	Ν	Y	Y	~Y
 Lack of Cooling Water 	Y	Y	Y	Y	Y	Y	Y	Y
Speed	Y/N	Y	Y	Y	Y	Y	Y	~Y
Exhaust Pressure	Y	Y	Y	Y	Y	Y	Y	Y
Pump Run Hours	Y/N	Y	Y	Y	Y	Y	Y	~Y
Power, Current	Y	Y	Y	Y	Y	Y	Y	Y
N2 Purge*	Y	Y	Y	Y	Y	Y	Y	Y

Equipment & Materials Traceability Task Force Activities & Status [1/5]

- New Standard: Specification for Equipment and Materials Labels (SEMI Draft Document # 6448)
 - To define material Bar Code Label (BCL) standard for all incoming direct materials, parts, and consumables for semiconductor manufacturing.
 - Addresses traceability requirements along the incoming material and parts supply chain to enable effective isolation of defects in the manufacturing process or post manufacturing quality investigation
 - For suppliers and Original Equipment Manufacturers (OEMs) of direct materials, parts, consumables, repaired parts, clean parts and refurbish parts that have a Certificate of Analysis (COA) or Certificate of Conformance (CoC)
 - Specifies data that is included in Equipment and Material Labels for both machine readable 2D barcode and human readable format in accordance with VDA 4992 - MAT Label and eMat data exchange

	Part.No.: Quantity:	9800131640 1	Index: A MS-Level: 1
	,	: AV452127CF	NR2
	Part Name:	Anvil (2000 K	G)
PERSONAL PROPERTY AND	Package-ID:	3SUN830417	592000123456789
1. Batch: 45700000	A0000000A	Prod. Date:	20200424
2. Batch:		Expiry Date:	20990218
Supplier-ID: 83	-041-7592	Supplier:	NumberOne Corporation
Order Number: AB	CXYZ	Delivery Note	
Man. Part-No: SL	105103MAA-S		
Man. Location: US	-Anaheim		Rolds
Supplier-Data:			an a ber


Figure 1 Example MAT Label (Large Format – 45mm x 78mm)

Equipment & Materials Traceability Task Force Activities & Status [2/5]

• New Standard: Specification for Equipment and Materials Labels (SEMI Draft Document # 6448)

Logistic and Traceability Information

- Supplier Name
- Supplier ID (or DUNS number)
- Package ID
- Quantity
- Unit of Measure
- Batch-No (e.g., volume, production)
- Batch-No (for clean or repair)
- Order Number
- Delivery Note Number
- Supplier Data

Equipment & Materials Traceability Task Force Activities & Status [3/5]

- New Standard: Specification for Equipment and Materials Labels (SEMI Draft Document # 6448)
 - Material Label Use Case Scenarios (as part of Related Information Section)

VDA 4992 Field Number	VDA 4992 Data Field	Mapping
4	Manufacturer Part Number	 Part Number. A cleaned or repaired part number can be different than the original OEM part number. A supplier may choose to use a different part number to indicate it is refurbished.
5	Ordering Code	Secondary Part information such as drawing number, software revision on controller etc. It could also include a cleaning supplier's assigned part number, which may referenc part and/or cleaning procedure.
10	Additional Part Information	Information agreed to between Customer and Supplier. (e.g., number of times the part was cleaned).
11	Date of Manufacturing	Date of cleaning or refurbishment
20	Batch-No. #1	 Information about the original material or part. If the cleaned or repaired part number is different than the original part number, this field contains the original part number as the first piece of information in th data field.
21	Batch-No. #2	Information about the cleaning process (e.g., cleaning batch information).
22	Order Number	Customer PO Number.

Cleaned Part

Table R1-2 Cleaned or Refurbished Part Use Case Data Field Mappings

New Part

VDA 4992 Field Number	VDA 4992 Data Field	Mapping
5	Ordering Code	Secondary Part information such as drawing number, software revision on controllers, etc.
		 The GTIN or EAN manufacturer part number is recorded in this field.
20	Batch-No. #1	Information about the material or part.
21	Batch-No. #2	Hardcoded value as an empty string ("").
22	Order Number	Customer PO Number.

Consumable Material

Table R1-3 Photo Resist Use Case Data Field Mappings

VDA 4992 Field Number	VDA 4992 Data Field	Mapping
5	Ordering Code	 Secondary Part information such as drawing number, software revision on controllers, etc. The GTIN or EAN manufacturer part number is recorded in this field.
20	Batch-No. #1	Information about the material.
21	Batch-No. #2	Hardcoded value as an empty string ("").
22	Order Number	Customer PO Number.

Contact Information

Mayura P

Technical Project Manager 673 S. Milpitas Boulevard Milpitas, CA 95035 Phone: 1.979.739.0690 Email: mpadmanabhan@semi.org

Paul Trio

Director, Standards 673 S. Milpitas Boulevard Milpitas, CA 95035 Phone: 1.408.943.7041 Email: ptrio@semi.org

